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The spine of a supersingular ℓ-isogeny graph
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Abstract. Supersingular elliptic curve ℓ-isogeny graphs over finite fields of-
fer a setting for a number of quantum-resistant cryptographic protocols. The

security analysis of these schemes typically assumes that these graphs be-
have randomly. Motivated by this debatable assertion, we explore structural

properties of these graphs. We detail the behavior, governed by congruence

conditions on p, of the ℓ-isogeny graph over Fp when passing to the spine,
i.e. the subgraph induced by the Fp-vertices in the full ℓ-isogeny graph. We

describe the diameter of the spine and offer numerical data on the number of

vertices, over both Fp and Fp, in the center of the ℓ-isogeny graph. Our plots
of these counts exhibit a wave-shaped pattern which supports the assertion

that centers of supersingular ℓ-isogeny graphs exhibit the same behavior as

those of random (ℓ+ 1)-regular graphs.

1. Introduction

Supersingular elliptic curve isogeny graphs have undergone a surge of research
activity in recent years, in part due to their suitability as a mathematical founda-
tion for quantum-safe cryptographic applications. In particular, the path-finding
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problem in these graphs seems to be intractable even on a quantum computer. For
a prime p, the supersingular isogeny graph Gℓ(Fp) has as its vertex set the Fp-
isomorphism classes of supersingular elliptic curves, labeled by their j-invariants
in Fp2 . The directed edges of Gℓ(Fp) are the ℓ-isogenies between elliptic curves
representing vertices, where ℓ is a (usually small) prime. Given two vertices, repre-
sented by two elliptic curves E,E′ over Fp, the path-finding problem in Gℓ(Fp) asks
to find a path from E to E′ comprised of ℓ-isogenies. The presumed intractability
of this problem provides security for a number of cryptographic protocols, including
[CLG09,DFKL+20,FFK+23] and their variants.

It is well-known that supersingular ℓ-isogeny graphs are optimal expander
graphs, and are in fact Ramanujan graphs when p ≡ 1 (mod 12). The security
analysis of supersingular isogeny based cryptographic schemes typically assumes
that Gℓ(Fp) behaves like a “random” Ramanujan graph, a supposition that has
since been called into question. For example, the p-power Frobenius acting on
Gℓ(Fp) pairs up paths with their Frobenius conjugate paths. It also fixes vertices in
Fp and those ℓ-isogenies between them that are defined over Fp. Moreover, path-
finding becomes substantially easier when the start and end vertices belong to Fp

[DG16,CJS14]. Such special structural features exhibited by the subgraph of
Gℓ(Fp) induced by the Fp-vertices, referred to as the spine of Gℓ(Fp), may make it
possible to distinguish a supersingular elliptic curve ℓ-isogeny graph from a random
optimal expander or Ramanujan graph.

These questions prompted the authors of [ACNL+23] to launch a thorough
investigation into the spine Sp

ℓ of Gℓ(Fp). To that end, they considered the su-
persingular isogeny Fp-graph Gℓ(Fp), where the vertices are now Fp-isomorphism
classes of supersingular elliptic curves and the edges are Fp-rational ℓ-isogenies. The
structure of this graph is well understood and was described in detail in [DG16].
There is a natural two-step process of passing from Gℓ(Fp) to the spine Sp

ℓ ⊂ Gℓ(Fp):
vertices in Gℓ(Fp) corresponding to twists of curves are identified in Sp

ℓ (with any Fp-
isogenies between them turning into loop edges), and edges arising from ℓ-isogenies
not defined over Fp are then added. In [ACNL+23], the possible behaviors ex-
hibited by the connected components of Gℓ(Fp) under this process were analyzed
in detail. Here, we expand on this exploration, refining the results of [ACNL+23]
and offering new findings.

Our contribution herein is two-fold. In Section 4, we describe all the ways,
characterized by explicit congruence conditions on p, in which components of Gℓ(Fp)
can behave when passing to Sp

ℓ for the arguably most interesting case of ℓ = 2. In
Section 5, we do the same for ℓ = 3 and give a road map of how to extend our
approach to isogeny degrees ℓ ≥ 5.

Leveraging our spine structure results, we describe the diameter (the largest
possible directed distance between any pair of vertices) in any component of Sp

ℓ in
Section 6. This is followed by an extensive numerical investigation of the center
of Gℓ(Fp), i.e. the set of vertices for which the largest distance to any other vertex
is minimal. Center vertices can be thought of as having increased connectivity to
the rest of the graph compared to the vertices outside the center. The fact that
Frobenius is a graph automorphism on Gℓ(Fp) that fixes precisely the Fp-vertices
might suggest that spine vertices are more prominently represented in the center
of Gℓ(Fp) than vertices not defined over Fp. Our numerical experiments for ℓ = 2, 3
and the first 2260 primes p ̸= 2, 3 (i.e. 5 ≤ p < 20000) demonstrate that this is in

18 Jun 2025 06:21:36 PDT

250201-Scheidler Version 2 - Submitted to LuCaNT



THE SPINE OF A SUPERSINGULAR ℓ-ISOGENY GRAPH 3

fact not the case for this range of parameters, thereby providing evidence against
this claim. Plots of counts of Fp-vertices belonging to the center of Gℓ(Fp) exhibit
a wave pattern, where wave peaks become higher and are spaced increasingly far
apart for larger values of p. Similar wave shapes appear for ℓ = 3, and this behavior
is more pronounced when plotting the size of the entire center of G2(Fp) rather than
just the number of its spine vertices. Although visually striking, this pattern is in
fact evidence that the center size of Gℓ(Fp) behaves like that of a random (ℓ + 1)-
regular graph.

1.1. Accompanying data and code. The data used to create the figures in
this work, as well as the SageMath [S+25] code used to generate that data, can
be found at the GitHub repository [Hed25]. Consult the README.md file for
a list of the included files and their functionalies. This code is modified from its
original version, which was created by the first author in the summer of 2023. Data
collected in .csv files was generated using SageMath 10.4 [S+25] on a MacBook
Pro, Apple M3, with 16 GB of memory, running macOS Sonoma 14.6.1.

1.2. Acknowledgments. We thank Jonathan Love, Jonathan Komada Erik-
sen and Thomas Decru for their observations and comments in Section 6.3. We are
also grateful to our anonymous referees for their comprehensive reviews and their
constructive and helpful comments.

2. Supersingular elliptic curve isogeny graphs

Let p be a prime, Fp the finite field of p elements and Fp a fixed algebraic

closure of Fp. We consider supersingular elliptic curves over Fp and recall that

every Fp-isomorphism class of such curves contains a representative that is defined
over Fp2 . Isomorphism classes of supersingular elliptic curves are classified by their
j-invariant, which is thus an element of Fp2 . The j-invariants of curves with extra
automorphisms may or may not be supersingular; specifically, j = 1728 is supersin-
gular if and only if p ≡ 3 (mod 4), and j = 0 is supersingular if and only if p ≡ 2
(mod 3).

While the endomorphism ring of a supersingular elliptic curve defined over Fp is
isomorphic to a maximal order in a quaternion algebra, the ring of endomorphisms
defined over Fp of any elliptic curve over Fp is isomorphic to an imaginary quadratic
order. Specifically, when p ≡ 1 (mod 4), all supersingular elliptic curves defined
over Fp have Fp-endomorphism ring isomorphic to the maximal order Z[

√
−p] of

discriminant −4p. When p ≡ 3 (mod 4), all such curves have Fp-endomorphism
ring isomorphic to either the maximal order Z[(1+

√
−p)/2] of discriminant −p or its

index 2 suborder Z[
√
−p] of discriminant −4p. For any quadratic discriminant ∆,

denote by h(∆) the class number (i.e. the size of the class group) of the quadratic
order of discriminant ∆.

Proposition 2.1 (Class number parity, p ≡ 3 (mod 4)). . If p ≡ 3 (mod 4),
then h(−p) is odd.

Proof. For any fundamental discriminant ∆ < 0, the 2-rank of the class group
of the quadratic order O∆ of discriminant ∆, i.e. its number of 2-Sylow factors, is
one less than the number of prime factors of ∆ by genus theory (see [JW09, p.
170] for example). Hence h(−p) is odd when p ≡ 3 (mod 4). □
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When p ≡ 1 (mod 4), the 2-rank of the class group of Q(
√
−p) is 1, so h(−4p)

is even. But this does not determine the 2-adic valuation of h(−4p).
Now fix a prime ℓ. We associate two directed graphs to the set of supersingu-

lar elliptic curves and their ℓ-isogenies. For both graphs, the set of vertices does
not depend on ℓ, but the set of edges does. Two isogenies are said to be Fp-

equivalent (resp., Fp-equivalent) if they are equal up to post-composition with an

Fp-automorphism (resp., an Fp-automorphism).

Definition 2.2 (Supersingular elliptic curve isogeny graphs). Let p and ℓ be
primes. Define the following two graphs.

• The supersingular elliptic curve ℓ isogeny graph over Fp, denoted Gℓ(Fp),
is the directed graph whose vertices are Fp-isomorphism classes of super-
singular elliptic curves and whose edges are ℓ-isogenies of these curves up
to Fp-equivalence.

• The supersingular elliptic curve ℓ-isogeny graph over Fp, denoted Gℓ(Fp),

is the directed graph whose vertices are Fp-isomorphism classes of super-
singular elliptic curves and whose edges are ℓ-isogenies of these curves up
to Fp-equivalence.

By identifying ℓ-isogenies with their duals, the two graphs become undirected.
Note that due to post-composition by the extra automorphisms at j-invariants 0
and 1728, this process may identify two or three directed edges in Gℓ(Fp) with the
same edge in the other direction; see [ACNL+23, Rem. 2.3]. We will work with
the undirected variants when it is convenient and edge direction does not matter.

It is well-known that the undirected variant of Gℓ(Fp) is an optimal expander
graph, and is in fact an (ℓ + 1)-regular Ramanujan graph when p ≡ 1 (mod 12).
We recall three key results governing the structure of Gℓ(Fp):

• For any j-invariant j, the neighbors of j in Gℓ(Fp) are precisely the roots
of Φℓ(j, Y ) (mod p). The multiplicity of an edge joining j to j′ is the
multiplicity of the root j′ of Φℓ(j, Y ) (mod p). An explicit list of modular
polynomials of can be found at [Sut].

• Two (not necessary distinct) j-invariants j, j′ are joined by a multi-edge
in Gℓ(Fp) if both are roots of the polynomial Resℓ(X) (mod p), where

(2.1) Resℓ(X) = Res

(
Φℓ(X,Y ),

∂

∂Y
Φℓ(X,Y ); Y

)
,

the resultant of the level ℓ modular polynomial Φℓ(X,Y ) and its partial
derivative with respect to Y when both are considered as polynomials in
Y with coefficients in Z[X].

• The roots of the Hilbert class polynomial H∆(X) for the imaginary qua-
dratic order O∆ of discriminant ∆ are precisely the j-invariants with en-
domorphism ring isomorphic to O∆. Such a j-invariant is supersingular
if and only if p does not split in O∆ (see [Lan87, Ch. 13, Thm. 12].

The structure of Gℓ(Fp) for p ≥ 5 was first described in [DG16]. Following
volcano terminology first introduced in [FM02], vertices in Gℓ(Fp) corresponding
to elliptic curves with Fp-endomorphism ring Z[(1 +

√
−p)/2] are said to lie on the

surface; those with Fp-endomorphism rings Z[
√
−p] lie on the floor. When p ≡ 1

(mod 4), all vertices are on the floor. We restate the main structure theorem of
[DG16] here. Recall that two vertices of a graph are adjacent if they are joined by
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THE SPINE OF A SUPERSINGULAR ℓ-ISOGENY GRAPH 5

an edge, in which case each vertex is said to be incident with the edge. Adjacent
vertices are also referred to as neighbors.

Theorem 2.3. [DG16, Thm. 2.7], Structure of Gℓ(Fp) Let p ≥ 5 be a prime.

(1) If ℓ = 2 and p ≡ 1 (mod 4), then G2(Fp) consists of h(−4p) vertices joined
in adjacent pairs.

(2) If ℓ = 2 and p ≡ 3 (mod 8), then G2(Fp) consists of 4h(−p) vertices
organized into h(−p) tripod formations. Each tripod consists of a single
vertex on the surface that is adjacent to three distinct vertices on the
floor.

(3) If ℓ = 2 and p ≡ 7 (mod 8), then G2(Fp) consists of 2h(−p) vertices,
organized into volcanoes. Each volcano contains a (possibly degenerate)
cycle consisting of vertices on the surface, each of which is adjacent to a
unique vertex on the floor.

(4) If ℓ > 2, with ℓ ̸= p, then Gℓ(Fp) is a disoint union of (possibly degenerate)
cycles. If p ≡ 3 (mod 4), then each cycle contains either surface vertices
or floor vertices, but not both.

In cases (3) and (4), the length of each cycle is the order of the class generated
by a prime ideal above ℓ in the class group of the corresponding quadratic order.
When p ≡ 3 (mod 4), vertices on the surface may be incident with loop edges.

Note that cycles may be degenerate, i.e. consist of one vertex only. In particular,
for ℓ > 2, Gℓ(Fp) may consist of isolated vertices (possibly with loops); for example,

when the Legendre symbol (−p
ℓ ) = −1 or Q(

√
−p) has class number 1.

We characterize loops and multi-edges in Gℓ(Fp) when p > ℓ.

Proposition 2.4 (Loops in Gℓ(Fp)). Suppose p > ℓ.

(1) If p ≡ 3 (mod 4), then a vertex on the surface of Gℓ(Fp) is incident with
a loop if and only if 4ℓ− p is a perfect square. In this case, every vertex
on the surface is incident with two distinct loops, corresponding to dual
degree ℓ endomorphisms.

(2) No vertex of Gℓ(Fp) on the floor is incident with a loop.

Proof. Loops in Gℓ(Fp) correspond to degree ℓ endomorphisms over Fp, which
in turn correspond to elements of norm ℓ in the appropriate quadratic order.
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(1) For brevity, put ω = (1 +
√
−p)/2 and let α = a + bω ∈ Z[ω] be the

element of norm ℓ corresponding to loop incident with a vertex on the
surface of Gℓ(Fp). Since p > ℓ, we obtain

4p > 4ℓ = 4N(α) = (2a+ b)2 + b2p ≥ b2p.

so |b| ≤ 1. If b = 0, then ℓ = N(α) = a2 which is impossible since ℓ
is prime. This forces b = ±1, so 4ℓ − p = (2a ± 1)2 is a perfect square.
Conversely, if 4ℓ − p = m2 with m ∈ Z, then m must be odd. Thus,
α = a + ω ∈ Z[ω] with a = (m − 1)/2 is an element of norm ℓ. Note
that α = (m+

√
−p)/2, so the two loops at j correspond to the conjugate

elements (m±
√
−p)/2 ∈ Z[ω] of norm ℓ.

(2) Now let α = a + b
√
−p ∈ Z[

√
−p]. Then N(α) = a2 + b2p. If b ̸= 0,

then N(α) ≥ p > ℓ, whereas if b = 0, then N(α) = a2 which is not prime
and hence also distinct from ℓ. Hence Z[

√
−p] contains no elements of

norm ℓ. □

In particular, Gℓ(Fp) can only contain loops if p ≡ 3 (mod 4) and 4ℓ − p is a
perfect square. Applying this to ℓ = 2, 3 immediately yields the following.

Corollary 2.5 (Loops in Gℓ(Fp) for ℓ = 2, 3). For ℓ = 2, 3 and p > ℓ, the
graph Gℓ(Fp) contains no loops except when (ℓ, p) ∈ {(2, 7), (3, 11)}, where Gℓ(Fp)
has one vertex that is incident with two pairs of loops.

We now turn to multi-edges in Gℓ(Fp) that are not loops.

Proposition 2.6 (Multi-edges in Gℓ(Fp)). Suppose p > ℓ.

(1) If p ≡ 3 (mod 4), then Gℓ(Fp) contains no directed multi-edges except
possibly loops unless (ℓ, p) = (2, 3). Here, G2(F3) has one directed triple
edge.

(2) If p ≡ 1 (mod 4), then Gℓ(Fp) contains directed multi-edges if and only if
it has at least two vertices and 2ℓ− p is a perfect square. In this case, the
vertices in Gℓ(Fp) are joined pairwise by pairs of double edges in opposite
directions.

Proof. A directed multi-edge in Gℓ(Fp) that is not a loop corresponds to
multiple Fp-non-equivalent ℓ-isogenies ϕ, ψ : E → E′ where E and E′ are not

isomorphic over Fp. Then ϕ̂ψ is an endomorphism on E of degree ℓ2, and we have

a multi-edge if and only if ϕ̂ψ is not the multiplication by ℓ map on E. Thus,
multi-edges arise from elements α ̸= ±ℓ of norm ℓ2 in the corresponding quadratic
order which are not squares up to sign.

(1) Assume p ≡ 3 (mod 4). Note that ℓ does not ramify in Z[ω] as ℓ ̸= p.
Suppose first that ℓ splits in Z[ω], and write (ℓ) = ll with prime ideals l, l of
Z[ω]. Note that this precludes the case p = 3, as ℓ < p implies ℓ = 2 in this
case, but 2 is inert in Q(

√
−3). Let α ∈ Z[ω] with α ̸= ±ℓ and N(α) = ℓ2.

Unique prime ideal factorization, together with (α) ̸= (ℓ), forces (α) = l2
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or (α) = l
2
. Assume the former; the case (α) = l

2
is entirely analogous.

Then l2 is principal. Since h(−p) is odd by Proposition 2.1, l must be
principal. This means that α is a square in Z[ω] up to sign, which we
precluded.

Now assume that ℓ is inert in Z[ω]. Since (ℓ) is the only prime ideal of
norm ℓ2, unique prime ideal factorization implies (α) = (ℓ). The assump-
tion α ̸= ℓ now forces p = 3 (the only case where Z[ω] has non-trivial units)
and hence ℓ = 2 since ℓ < p. Thus, α = ±2ζk where k = 1, 2 and ζ is a
primitive cube root of unity, so ±α ∈ {1+

√
−3, 1−

√
−3}. Indeed, among

the four F3-isomorphism classes of supersingular elliptic curves over F3,
exactly two, represented by the curves E± : y2 = x3 ± x, are 2-isogenous
over F3. The curve E+ is on the floor, whereas E− is on the surface
and has, up to sign, three F3-rational automorphisms (x, y) 7→ (x + i, y)
for i = 0, 1, 2. So there are three F3-inequivalent 2-isogenies from E−
to E+, producing three directed edges. Their duals differ only by post-
composition by an automorphism on E− and are hence equivalent, yielding
one edge in the opposite direction.

(2) Now suppose p ≡ 1 (mod 4). Let α ∈ Z[
√
−p] with N(α) = ℓ2, α ̸= ±ℓ

and ±α not a square in Z[
√
−p]. Write α = a+b

√
−p with a, b ∈ Z. Then

a2 + b2p = ℓ2 and b ̸= 0, so |a| < ℓ. We have

(2.2) b2p = ℓ2 − a2 = (ℓ− |a|)(ℓ+ |a|),
so p divides ℓ− |a| or ℓ+ |a|. Since 1 ≤ ℓ− |a| ≤ ℓ < p, the first of these
possibilities cannot happen; hence p | ℓ+ |a|. Write ℓ+ |a| = kp for some
k ∈ Z. Then k ≥ 1 and kℓ < kp = ℓ + |a| < 2ℓ, forcing k = 1 and hence
p = ℓ+ |a|. By (2.2), we have b2 = ℓ− |a| = 2ℓ− p, so 2ℓ− p is a perfect
square. Conversely, if 2ℓ − p = b2 for some b ∈ Z, then the 4 elements
α = ±(p− ℓ)± b

√
−p all have norm ℓ2, are distinct from ±ℓ, and are not

squares in Z[
√
−p].

Note that as in the case p ≡ 3 (mod 4), we have (α) = l2 or (α) = l
2
,

where l and l are the two prime ideals above (ℓ) in Z[
√
−p]. So the ideal

class of l has order 2 in the class group of Q(
√
−p). This means that if

Gℓ(Fp) has more than one vertex and 2ℓ − p is a perfect square (which
rules out ℓ = 2 as p ≥ 5), all the cycles in Gℓ(Fp) as described in part (4)
of Theorem 2.3 have length 2. They correspond to two pairs of directed
edges and their respective duals. □

Proposition 2.6 shows that if p > ℓ > 2, then Gℓ(Fp) can only contain directed
double edges when p ≡ 1 (mod 4) and p ≤ 2ℓ− 1. The cases ℓ = 2, 3 can now once
again be easily deduced.

Corollary 2.7 (Multi-edges in Gℓ(Fp) for ℓ = 2, 3). For ℓ = 2, 3 and p > ℓ,
apart from the loops of Corollary 2.5, Gℓ(Fp) contains no directed multi-edges except
when (ℓ, p) ∈ {(2, 3), (3, 5)}.

A list of prime pairs (ℓ, p) with 2 ≤ ℓ < 100 and p > ℓ for which Gℓ(Fp)
has directed multi-edges, including loops, can be found in the file called loops

& multi-edges in G l(Fp).pdf at the GitHub repository [Hed25]. A notebook
with code to generate visual depictions of Gℓ(Fp) and Gℓ(Fp), under the name
Graph Viz.ipynb, is also available at [Hed25].
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3. The spine of Gℓ(Fp)

In this section, we review the relationship between Gℓ(Fp) and Gℓ(Fp); specif-

ically the process of moving from Fp-isomorphism classes of elliptic curves to Fp-

isomorphism classes, and from ℓ-isogenies defined over Fp to those defined over Fp.
This material is a summary of [ACNL+23].

Definition 3.1 (Spine). The spine Sp
ℓ is the subgraph of Gℓ(Fp) induced by

the vertices in Fp. Specifically, the vertices of Sp
ℓ are the Fp-isomorphism classes

of supersingular elliptic curves defined over Fp, and its edges are all the ℓ-isogenies
joining these vertices.

The terminology was first introduced in [ACNL+23] and stems from the fact
that Gℓ(Fp) can be obtained from Sp

ℓ by adding pairs of conjugate j-invariants
and the corresponding conjugate ℓ-isogenies for any j-invariant in Fp, conjuring an
image of a ribcage anchored at a spine. There are natural maps between the graphs
Gℓ(Fp), Gℓ(Fp), and Sp

ℓ :

Definition 3.2. Define Γ : Gℓ(Fp) → Gℓ(Fp) to take vertices of Gℓ(Fp) to their

Fp-isomorphism classes and edges to their Fp-equivalence classes.

Next, define Θ : Im(Γ) → Gℓ(Fp) to add edges between vertices in Im(Γ) that

correspond to isogenies defined over Fp and not defined over Fp. In particular,
Θ(Im(Γ)) = Sp

ℓ .

Lastly, define Ω = Θ ◦ Γ : Gℓ(Fp) → Sp
ℓ ⊆ Gℓ(Fp).

The following graph structural changes are possible under Ω:

Definition 3.3. .

• Stacking: Two connected components of Gℓ(Fp) stack under the map Γ
of Definition 3.2 if they are the same graph when labeled by j-invariants.

j1

j2 j3 j4

jt1

jt2 jt3 jt4

Γ j1

j2 j3j4

• Folding: A connected component of Gℓ(Fp) folds under the map Γ if it
only contains vertices corresponding to both quadratic twists for every
j-invariant appearing as a vertex in the component.

j1 jt1

Γ
j1

• Attachment at a vertex: Two components of Gℓ(Fp) have a vertex
attachment under the map Γ if they both contain a vertex with the same
j-invariant but the neighbors of that shared j-invariant are different in
the two components.

jt3

j3

jt2

j2

j1 jt1

jt4

j4

jt5

j5
Γ

j3

j2

j1 j5

j4

• Attachment by a new edge: Two connected components of Gℓ(Fp)
have an edge attachment if a new edge appears under the map Θ of Defi-
nition 3.2 which connects these two components.
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Γ j1

j2 j3 j4

j5

j6 j7 j8

Θ j1

j2 j3j4

j5

j6 j7j8

The map Γ is always 2-to-1 on vertices, and also 2-to-1 on edges outside of the
neighborhoods of j = 0, 1728. Definition 3.3 immediately implies the following.

Lemma 3.4. Folding and stacking are mutually exclusive.

Proof. If two components stack, then one component’s vertices correspond to
the quadratic twists of the other component’s vertices. If a component folds, then
the quadratic twists of its vertices belong to that same component. □

As shown in [ACNL+23, Prop. 3.16 and Cor. 3.24], vertex attachment is only
possible at the j-invariant 1728 and only for ℓ > 2. Attachment by a new edge
implies a double edge in Gℓ(Fp) by [ACNL+23, Cor. 3.15]. We recall the precise
theorems from [ACNL+23] describing the changes to Gℓ(Fp) under the map Ω:

Theorem 3.5 ([ACNL+23, Thm. 3.29]). Let ℓ = 2. Under the map Γ :
G2(Fp) → G2(Fp) of Definition 3.2, only stacking and folding are possible. Under

the map Θ : Im(Γ) → G2(Fp), at most one attachment by a new edge is possible.
In particular, attachment by a vertex is not possible.

Theorem 3.6 ([ACNL+23, Thm. 3.18]). Let p and ℓ > 2 be distinct primes
such that the order of a prime ideal l above ℓ in the class group of Q(

√
−p) is odd.

Under the map Γ : Gℓ(Fp) → Gℓ(Fp):

• the two components containing vertices corresponding to j = 1728 fold
and attach at the vertex j = 1728;

• all other components stack.

Under the map Θ : Im(Γ) → Gℓ(Fp), the number of new edges is bounded by the
degree of Resℓ(X) (mod p), with Resℓ(X) given in (2.1).

In the next two sections, building on the results of [ACNL+23, Sec. 3], we
explicitly describe the structure of Sp

2 and and Sp
3 in terms of specific congru-

ence conditions on p. We also provide a road map for extending this approach in
principle to any ℓ and outline obstacles one might encounter. Small primes are
treated separately elsewhere: a detailed description of the graphs Gℓ(Fp), Sp

ℓ and

Gℓ(Fp) for 2 ≤ p ≤ 31 can be found under the file name SmallCharacteristic-

GraphDescription.pdf. This information can also be generated with the notebook
Small Prime Information.ipynb, and the notebook Graph Viz.ipynp generates
images of all three graphs. All these sources are available at [Hed25].

4. Structure of the spine Sp
2

In this section, we provide congruence conditions on p that govern the structure
of Sp

2 , the spine for ℓ = 2. This case carries the most interest, especially when p ≡ 3
(mod 4), due to the volcano structure of G2(Fp). For much of this section, we only
consider primes p ≥ 17; for details on the primes 2 ≤ p ≤ 13, consult the sources
cited at the end of Section 3.
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As expected, our investigation makes extensive use of the modular polynomial
Φ2(X,X) and the polynomial Res2(X) defined in (2.1). Explicitly:

Φ2(X,X) = −(X − 1728)(X − 8000)(X + 3375)2,(4.1)

Res2(X) = −22X2(X − 1728)(X + 3375)2(X2 + 191025X − 121287375)2.(4.2)

By Corollary 2.5, G2(Fp) contains loops only for p = 7. We recall a well-known

result about loops in G2(Fp), cf. [Gha24, Ex. 3].

Lemma 4.1 (Loops in G2(Fp)). Let p ̸= 2, 7. Loops occur in G2(Fp) at vertices
corresponding to precisely the following j-invariants, all belonging to Fp:

1728 if p ≡ 3 (mod 4),

8000 if p ≡ 5, 7 (mod 8),

−3375 if p ≡ 3, 5, 6 (mod 7).

Proof. The loops in G2(Fp) are precisely the roots of the polynomial Φ2(X,X)
of (4.1). Its linear factors are the Hilbert class polynomials H−4(X), H−8(X)
and H−7(X). The congruence conditions on p characterize when p is inert in the
corresponding imaginary quadratic fields. □

The j-invariants listed in Lemma 4.1 need not be distinct for primes p ≤ 5;
these small primes are handled explicitly in the document SmallCharacteristic-
GraphDescription.pdf at [Hed25].

Lemma 4.2. [ACNL+23, Prop. 3.22] Let j ∈ Fp be a supersingular j-invariant,
and denote by vj , wj the two distinct vertices of G2(Fp) representing isomorphism
classes with j-invariant j. If j ̸= 1728, then vj and wj have neighbors in G2(Fp)
that correspond to identical j-invariants. Specifically:

(1) If p ≡ 1 (mod 4), then the unique neighbor of vj and the unique neighbor
of wj are vertices representing the same j-invariant j′.

(2) If p ≡ 3 (mod 4) and the vertices vj , wj are on the floor, then the unique
neighbor of vj and the unique neighbor of wj are vertices with the same
j-invariant j′.

(3) If p ≡ 3 (mod 4) and the vertices vj , wj are on the surface, then vj
has three neighbors with distinct j-invariants j1, j2, j3 and wj has three
neighbors with the same j-invariants j1, j2, j3.

The following proposition corrects [ACNL+23, Cor. 3.28].

Proposition 4.3 (Folding for ℓ = 2). Let p > 7 be prime. The only connected
components of G2(Fp) which fold are those containing vertices with j = 8000 (if
p ≡ 5, 7 (mod 8)) and/or j = 1728 (if p ≡ 3 (mod 4)).

Proof. A component folds if and only if it contains only vertices corresponding
to both Fp-twists of a single supersingular elliptic curve j-invariant when ℓ = 2,
see [ACNL+23, Cor. 3.28]. Such a component necessarily contains two adjacent
vertices corresponding to a pair of twists which are 2-isogenous over Fp. The roots
of Φ2(X,X) are precisely 8000, 1728,−3375; see (4.1).

Since −3375 is a double root of Φ2(X,X), there are two distinct 2-isogenies
between elliptic curves with j-invariant j = −3375. There are no loops or multi-
edges in G2(Fp) for p > 7 by Corollaries 2.5 and 2.7, so these isogenies do not
correspond to edges in G2(Fp).
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THE SPINE OF A SUPERSINGULAR ℓ-ISOGENY GRAPH 11

In [ACNL+23], the authors mistakenly declare that j = 8000 is only super-
singular for p ≡ 5 (mod 8), when in fact j = 8000 is supersingular for p ≡ 5, 7
(mod 8). The two models that the authors list for the curve over Z:

E8000 : y2 = x3 − 4320x+ 96768, Et
8000 : y2 = x3 − 17280x− 774144

are twists by
√
−2 (not

√
2, as stated by the authors). Since −2 is not a square

modulo p for p ≡ 5, 7 (mod 8), E and E′ reduce to supersingular quadratic twists
over Fp for such primes p. Moreover, E and E′ have a Z-rational 2-isogeny between
them, so they represent adjacent vertices on a connected component of G2(Fp).

Likewise, Z-models for j = 1728 show that the Fp-isomorphism classes are
2-isogenous over Fp. □

Since edge attachment forces a double edge, we need to identify double edges
in G2(Fp) that join two vertices in Fp. This amounts to ascertaining when the roots
of the polynomial Res2(X) in (4.2) are supersingular and belong to Fp. For j = 0,
this requires p ≡ 2 (mod 3), and for the roots 1728 and −3375 of Res2(X), this was
addressed in Lemma 4.1. So we need only consider the quadratic factor of Res2(X),
which is in fact the Hilbert class polynomial H−15(X).

Lemma 4.4 (Multi-edges in G2(Fp)). Let p ≥ 7. In addition to the loops in

Lemma 4.1, G2(Fp) has multi-edges when p = 7, 13 or p ≡ 11, 14 (mod 15).

Proof. By (4.2), additional double edges correspond to the roots modulo p of

H−15(X) = X2 +191025X − 121287375, which are (−191025± 85995
√
5)/2. For p

odd, their reductions modulo p belong to Fp if and only if p | 85995 = 33 · 5 · 72 · 13
or 5 is a quadratic residue modulo p. So assuming p ≥ 7, H−15 (mod p) has roots
in Fp if and only if p = 7, 13 or ( 5p ) = 1. The latter condition holds if and only if

p ≡ ±1 (mod 5).
For p ≥ 7, the roots of H−15(X) (mod p) are j-invariants of supersingular

elliptic curves if and only if (−15
p ) = −1. Note that this holds for p = 7 and p = 13,

in which case H−15(X) has the double root −191025/2 ∈ Fp; else it has two distinct
roots in Fp. Assuming ( 5p ) = 1, the condition (−15

p ) = −1 reduces to (−3
p ) = −1,

or equivalently, p ≡ 2 (mod 3). Finally, p ≡ ±1 (mod 5) and p ≡ 2 (mod 3) if and
only if p ≡ 11 or 14 (mod 15). □

Proposition 4.5 (New edges and edge attachment for ℓ = 2). Suppose p ≥ 17.

(1) If p ̸≡ 7 (mod 8), then new edges appear at the supersingular j-invariants
which are roots of H−15(X). The new edge joining the two distinct roots
of H−15(X) is attaching. Thus, edge attachment happens when p ≡ 11,
29, 41, 59, 89, 101 (mod 120).

(2) If p ≡ 7 (mod 8), then attachment by an edge can only happen between
vertices distinct from −3375, 1728 and 0 whose j-invariants are roots
of H−15(X).

Proof. Part (1) is an extension of [ACNL+23, Cor. 3.30], where the authors
proved the result under the assumption that p > 101. We contribute the computa-
tions for p ≤ 101 to complete the result.

New edges correspond to distinct roots of H−15(x) that are supersingular j-
invariants in Fp. Since p ̸= 7, 13, the roots of H−15(x) are distinct modulo p and
are supersingular for p ≡ 11 or 14 (mod 15) by Lemma 4.4. Combining these
congruence conditions with p ̸≡ 7 (mod 8) results in the set of congruence classes
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12 TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

listed in part (1). It thus suffices to verify this for p = 29, 41, 59, 71, 89, and 101.
For p = 29, 41 and 59, edge attachment holds by the connectivity of G2(Fp) and
the fact that all the supersingular j-invariants belong to Fp. For p = 89 and 101,
direct computation of Sp

2 confirms the edge attachment.
The case p ≡ 7 (mod 8) is covered in [ACNL+23, Prop. 3.25]. □

For p ≡ 11, 14 (mod 15) with p ≡ 7 (mod 8), or equivalently, p ≡ 71 or 119
(mod 120), the new edges of Proposition 4.5 may or may not be attaching.

Triple edges in Gℓ(Fp) also play a role in ascertaining edge attachment. The

following theorem characterizes the occurrence of triple edges in G2(Fp).

Proposition 4.6 (Triple edges in G2(Fp)). For brevity, let P2 = {2, 3, 5, 7, 13}.

(1) If p ∈ P2, then G2(Fp) is identical to the spine Sp
2 and consists of a single

vertex with a triple loop.
(2) If p ̸∈ P2, and p ≡ 2 (mod 3), then there is a triple edge from the vertex

corresponding to j = 0 to the vertex corresponding to j = 54000.
(3) For all other primes p, G2(Fp) does not contain triple edges.

Proof. A proof for the primes p ∈ P2 can be found in the document Small-
CharacteristicGraphDescription.pdf at [Hed25], so suppose p /∈ P2. The
primes p for which Sp

2 contains a triple edge are those for which the polynomials
Res2(X) of (4.2) and the polynomial

Res
(2)
2 (X) = Res

(
Φ2(X,Y ),

∂2

∂Y 2
Φ2(X,Y ); Y

)
= −22 · 3X(X − 405)(X2 − 2571X + 1492425)

share a common root in Fp. The respective sets of roots of these two polynomials:

{
0, 1728,−3375,

−191025± 85995
√
5

2

}
,

{
0, 405,

2571± 39
√
421

2

}
.

The j-invariant 0 is a common root of both polynomials, so when j = 0 is super-
singular (i.e. p ≡ 2 (mod 3)), the graph Sp

2 has a triple edge from j = 0. Solving
Φ2(0, Y ) = 0 for Y over Z, we see that this triple edge is to the vertex j = 54000
and is hence not a loop (as 54000 ̸≡ 0 (mod p) for p ≥ 7). We show that Res2(X)

and Res
(2)
2 (X) have no other shared roots when p ̸∈ P2, thus ruling out any other

triple edges in Sp
2 .

For brevity, let f(X) = X2 − 2571X + 1492425 denote the quadratic factor of

Res
(2)
2 (X). We observe that the root j = 1728 of Res2(X) is not a root of Res

(2)
2 (X).

For p ̸∈ P2, note that 1728 ̸≡ 0, 405 (mod p) and f(1728) = 36 · 72 ̸≡ 0 (mod p).

Similarly, the root j = −3375 of Res2(X) is not a root of Res
(2)
2 (X), as −3375 ̸≡ 0

or 405 modulo p and f(−3375) = 36 · 52 · 7 · 132 ̸≡ 0 (mod p) when p ̸∈ P2.
Finally, we establish that H−15(X) and f(X) have no shared root. Equat-

ing the roots of these two polynomials modulo p yields the following sequence of
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implications:

−191025± 85995
√
5

2
≡ 2571± 39

√
421

2
(mod p),

(85995)2 · 5 ≡
(
193596± 39

√
421

)2

(mod p),

−504351432 ≡ ±15100488
√
421 (mod p),

(−504351432)2 ≡ (15100488)2 · 421 (mod p),

158371952330592000 ≡ 0 (mod p).

The only prime p ̸∈ P2 that divides 158371952330592000 is p = 11. The constant
coefficients of H−15(X) and f(X) are both multiples of 11, and it is now easy to
verify that the only common root of these two polynomials modulo 11 is 0. □

With these ingredients, we are ready to explicitly describe the graph struc-
ture of Sp

2 . As in Theorem 2.3, we consider three cases according to the struc-
ture of G2(Fp), in Theorems 4.7, 4.8, and 4.9, respectively. We refer to Small-

CharacteristicGraphDescription.pdf at [Hed25] for primes p with 2 ≤ p ≤ 13.

Theorem 4.7 (Spine structure, p ≡ 1 (mod 4) and ℓ = 2). Let p ≥ 17 with
p ≡ 1 (mod 4). When mapping G2(Fp) into the spine Sp

2 , there may be stacking,
folding, or attachment by new edges. The following congruence conditions on p
determine precisely which of these occur and how often.

(1) p = 29: G2(F29) has two components: the component containing the two
vertices with j = 8000 folds, and there is an edge attachment connecting
this folded component to the other component. The spine Sp

2 is the entire

2-isogeny graph G2(Fp).
(2) p ≡ 29, 101 (mod 120), p ̸= 29: the component containing the two vertices

with j = 8000 folds, all other components stack, and there is an edge
attachment connecting two stacked components. The spine Sp

2 consists of
one isolated vertex with j = 8000 with a loop, one component with four
vertices, and the remaining h(−4p)/2− 5 vertices are joined in pairs.

(3) p ≡ 41, 89 (mod 120): all components stack, and there is an edge at-
tachment. The spine Sp

2 consists of one connected component with four
vertices, and the remaining h(−4p)/2− 4 vertices are joined in pairs.

(4) p ≡ 13, 37, 53, 61, 77, 109 (mod 120): the component containing the two
vertices with j = 8000 folds, all other components stack, and there are
no edge attachments. The spine Sp

2 consists of one isolated vertex with
j = 8000 with a loop, and the remaining h(−4p)/2− 1 vertices connect in
pairs.

(5) p ≡ 1, 17, 49, 73, 97, 113 (mod 120): all components stack and there are
no edge attachments. The spine Sp

2 is h(−4p)/2 vertices joined in pairs.

The five cases are summarized in Table 4.1.

Proof. The case p = 29 can be verified by directly computing S29
2 .

We consider the cases for stacking and folding first, followed by those of edge
attachment. The individual congruence conditions can be combined by the Chinese
Remainder Theorem to provide the statements in this theorem.
Folding and stacking: By Proposition 4.3, the only connected components which
could possibly fold are those containing j = 8000 and j = 1728. Since p ≡ 1
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Edge attachment No edge attachment

p ≡ 41, 89 (mod 120)
p ≡ 1, 17, 49, 73, 97,

No fold
113 (mod 120)

w/ folded comp. not w/ folded comp.
p ≡ 13, 37, 53, 61, 77,

109 (mod 120)p = 29
p ≡ 29, 101 (mod 120),One fold

p ̸= 29

Table 4.1. Spine structure for p ≡ 1 (mod 4)

(mod 4), j = 1728 is not a supersingular j-invariant. The j-invariant 8000 is super-
singular over Fp whenever p ≡ 5, 7 (mod 8). Combining this with our assumption
that p ≡ 1 (mod 4), the connected component with vertices having j-invariant 8000
will fold whenever p ≡ 5 (mod 8). The rest of the components necessarily stack.
Edge attachment: Every edge that appears in G2(Fp) but does not already belong
to G2(Fp) results in a double edge by [ACNL+23, Lem. 3.14]. If a new edge is
not attaching, this would result in a triple edge in the case of p ≡ 1 (mod 4) since
the connected components of G2(Fp) are precisely edges, see Theorem 2.3. By
Proposition 4.6, a triple edge only occurs when a double edge is added between
vertices with an existing Fp-edge between them, there are no attaching triple edges
for p > 13, p ≡ 1 (mod 4).

By Proposition 4.5, attachment by a new edge happens when p ≡ 11, 29, 41, 59,
89, 101 (mod 120). Combining this with our assumption that p ≡ 1 (mod 4) yields
the congruence conditions p ≡ 29, 41 (mod 60).

To ascertain whether or not this edge attaches to the folding component (corre-
sponding to j = 8000), we observe that if p ≡ 1 (mod 4), j = 8000 is supersingular
if and only if p ≡ 5 (mod 8). Since p > 13, j = 8000 is a root of H15(X) only for
p = 29. This explains the second column of Table 4.1. The third column is obtained
by sorting the remaining congruence classes modulo 120 by their congruence classes
modulo 8. □

Theorem 4.8 (Spine structure, p ≡ 3 (mod 8) and ℓ = 2). Let p ≥ 17 with p ≡
3 (mod 8). When mapping G2(Fp) into the spine Sp

2 , there may be stacking, folding,
or attachment by new edges. The connected component of G2(Fp) containing the
two vertices with j = 1728 always folds. The following congruence conditions on p
determine precisely which of these occur and how often.

(1) p = 59: the folded component gets edge attached to another component
by an edge between two vertices on the floor.

(2) p ≡ 11, 59 (mod 120) and p ̸= 11, 59: an edge attachment takes place
between two stacked components with the attaching edge being incident
to two vertices on the floor.

(3) p ≡ 19, 43, 67, 83, 91, 107 (mod 120): no edge attachment takes place.

The three cases are summarized in Table 4.2.

No edge attachment p ≡ 19, 43, 67, 83, 91, 107 (mod 120)
EA w/ folded comp. p = 59
EA not w/ folded comp. p ≡ 11, 59 (mod 120) and p ̸= 11, 59

Table 4.2. Spine structure for p ≡ 3 (mod 8)
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Proof. The case p = 59 can be again be observed directly by computing S59
2 .

As before, we consider stacking and folding first, followed by edge attachment.
Chinese remaindering again produces the specified congruence conditions on p.
Folding and stacking: By Proposition 4.3, the only connected components which
could possibly fold are those containing j = 8000 or j = 1728. Since p ≡ 3
(mod 8), j = 8000 is not a supersingular j-invariant, but j = 1728 is supersingular,
and folding happens for the component containing the two vertices with j = 1728.
Edge attachment: By Proposition 4.5, attachment by a new edge happens when
p ≡ 11, 29, 41, 59, 89, 101 (mod 120). Combining this with p ≡ 3 (mod 8) yields
p ≡ 11, 59 (mod 120).

We can determine when the new edge attaches to the folded component. The
folded component is a tripod whose surface vertex corresponds to j = 1728 and
whose floor vertices have j-invariants 1728, 287496, and 287496, by Theorem 2.3,
Proposition 4.3, and the factorization Φ2(1728, X) = (X−1728)(X−287496)2. For
p > 13, the j-invariant j = 1728 is not a root of H−15(X), and j = 287496 is a root
of H−15(X) precisely when p = 59. In the remaining cases, the edge attachment
occurs between stacking components. This produces Table 4.2. □

Theorem 4.9 (Spine structure, p ≡ 7 (mod 8) and ℓ = 2). Let p ≥ 17 with p ≡
7 (mod 8). When mapping G2(Fp) into the spine Sp

2 , there may be stacking, folding,
or attachment by new edges. Only the unique connected component of G2(Fp)
containing j = 1728 and j = 8000 folds. The following congruence conditions on p
determine the presence of new edges.

(1) p ≡ 71, 119 (mod 120): there is a new double-edge in Sp
2 which may or

may not be an attachment.
(2) p ≡ 7, 23, 31, 47, 79, 103 (mod 120): edge attachment does not occur.

Proof. We proceed as in the proofs of the previous two theorems. By Propo-
sition 4.3, the only components of G2(Fp) which could possibly fold are those con-
taining j = 8000 and j = 1728. For p ≡ 7 (mod 8), both these are supersingular,
and are distinct for p > 13. By [ACNL+23, Ex. 3.8], exactly one of the occur-
rences of 1728 in G2(Fp) lies on the surface of a volcano. Since h(−p) is odd by
Proposition 2.1, any volcano surface contains an odd number of vertices. The two
vertices with j = 1728 are adjacent by a 2-isogeny over Fp, with one vertex on
the surface and the other on the floor of the connected component. In order for
folding to occur, this surface (with an odd number of vertices) must also contain
two adjacent vertices with the same j-invariant. This is only possible for j = 8000
by Lemma 4.1 (vertices with j = −3375 are ruled out since the 2-isogeny joining
curves with j = −3375 is not defined over Fp by the proof of Proposition 4.3).
Hence the unique component containing j = 1728 and j = 8000 folds.

A new edge is added when p ≡ 11, 14 (mod 15) by Proposition 4.5, but this
may or may not be an edge attachment. Other than this edge, there are no new
non-loop edges, so no further edge attachment can occur. Combining p ≡ 11, 14
(mod 15) with p ≡ 7 (mod 8) gives p ≡ 71, 119 (mod 120). □

Remark 4.10. Theorem 4.9 shows that precisely one connected component of
G2(Fp) folds for p ≡ 7 (mod 8). The structure of this folding component tells us
that the smallest positive integer k such that there exists an Fp-rational isogeny
of degree 2k between an elliptic curve with j = 8000 and an elliptic curve with
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16 TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

j = 1728 is k = (r − 1)/2, where r is the (necessarily odd) order of the class of a
prime ideal above 2 in the class group of Q(

√
−p).

Remark 4.11. Whether or not the new edge of Theorem 4.9 (1) produces an
edge attachment depends entirely on whether the roots of H−15(X) belong to the
same connected component of G2(Fp). When p ≡ 7 (mod 8), the volcano structure
of this graph leaves too many possibilities. There is no single simple condition to
establish the existence of an endomorphism, so we are not able to determine if the
new (double) edge is attaching or not. We provide examples for each case.

Example 4.12 (p = 71, no edge attachment). For p = 71, edge attachment
is in principle possible by Theorem 4.9; however, it does not occur. The graph
G2(F71) consists of a single component. It has 7 vertices on the surface joined to
7 vertices on the floor. This component folds and there is a new edge, but clearly
this cannot be an edge attachment: any time G2(Fp) consists of a single connected
component, edge attachment is not possible. See Figure 4.1.

(a) (b)

Figure 4.1. (A): The graph G2(F71). Vertex labels j, jt represent
the j-invariant of a curve and its quadratic twist. (B): The spine
graph S71

2 .

Example 4.13 (p = 1319, edge attachment). For p = 1319 ≡ 71 (mod 120),
edge attachment is possible by Theorem 4.9, and in fact it occurs. The graph
G2(F1319) has five connected components. Each component is a volcano with 9 ver-
tices on the surface and 9 vertices on the floor. Two pairs of connected components
stack and the remaining connected component folds. The two stacked components
attach at a new edge at the vertices with j-invariants 446 and 1103. See Figure 4.2.

5. Structure of Sp
ℓ for ℓ ≥ 3

The process of moving from Gℓ(Fp) to Sp
ℓ for ℓ ≥ 3 is less involved than the

analogous procedure for ℓ = 2 due to the substantially simpler structure of Gℓ(Fp)

as a collection of disjoint cycles. Note that if (−p
ℓ ) = −1, then Gℓ(Fp) has no edges,
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(a)

(b)

Figure 4.2. (A): One (of five) connected components of
G2(F1319). (B): The spine graph S1319

2 .

including loops, by Theorem 2.3 and Corollary 2.5. In this case, all components
(i.e. isolated vertices) stack, none fold, there is no vertex attachment, and only new
edges are introduced. We provide an overview of the general method for computing
spine structures, with particular focus on the case ℓ = 3, where we describe the
structure of Sp

3 in a manner similar to Theorems 4.7-4.9.

Step 1: Loops. Determine the vertices in Gℓ(Fp) belonging to Fp that are incident
with loops by factoring Φℓ(X,X) over Fp and determining the congruence condi-
tions on p such that these vertices correspond to supersingular j-invariants in Fp.
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18 TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

For edge attachment (investigated in step 3), also ascertain which of these loops
belong to Gℓ(Fp) via Proposition 2.4.

By Corollary 2.5, G3(Fp) contains loops only for p = 11. The loops in G3(Fp)
are given as follows.

Lemma 5.1 (Loops in G3(Fp)). Let p ̸= 2, 3, 11. Loops occur in G3(Fp) at
vertices corresponding to precisely the following j-invariants, all belonging to Fp:

0 and 54000 if p ≡ 2 (mod 3),

8000 if p ≡ 5, 7 (mod 8),

−32768 if p ≡ 2, 3, 6, 7, 8, 10 (mod 11).

Proof. We have

Φ3(X,X) = −X(X−54000)(X−8000)2(X+32768)2 = H−3H−12H
2
−8(X)H−11(X)2.

The congruence conditions on p come from the inertness of p in the corresponding
quadratic fields. □

The j-invariants of Lemma 5.1 are not all distinct for p ≤ 5.

Step 2: Folding and vertex attachment. If p ≡ 3 (mod 4), then there are two
different components containing 1728 by Theorem 3.6. The two components fold
and get attached at vertex j = 1728, and all other components stack.

If p ≡ 1 (mod 4), then the components that can fold are those containing two
adjacent vertices in Gℓ(Fp) with the same j-invariant, where Gℓ(Fp) does not have a

loop by Corollary 2.5 (but of course Gℓ(Fp) does). These vertices, along with loops
(see step 1), correspond to vertices j ∈ Fp such that Φℓ(j, j) = 0.

Proposition 5.2 (Folding and vertex attachment for ℓ = 3). If p ≡ 11
(mod 12), then only the two components containing j = 1728 fold and attach
at 1728. If p ≡ 5 (mod 12), then only the component containing j = 0 folds and
there is no vertex attachment. Else there is neither folding nor vertex attachment.

Proof. For p ≡ 11 (mod 12), this is Theorem 3.6. Suppose p ≡ 5 (mod 12).
Then j = 0 and j = 54000 are supersingular (they are the roots of H−3(X) and
H−12(X), respectively), whereas 1728 is not. Two elliptic curves defined over Fp

with j = 0 are E0 : y2 = x3 + 1 and Et
0 : y2 = x3 − 3, its twist by a cube root

of
√
−3 in Fp2 . Since −3 is not a square in Fp, they are non-isomorphic over Fp.

There is a 3-isogeny from E0 to Et
0 with kernel ⟨(0, 1)⟩ and hence defined over Fp,

i.e. corresponding to an edge in G3(Fp).
By [ACNL+23, Ex. 3.20], the only elliptic curves over Fp with an Fp-rational

3-isogeny to their twist are those with j-invariants 0 and 54000. Using the same
reasoning as in the proof of [ACNL+23, Thm. 3.18], we see that all their occur-
rences in G3(Fp) belong to the same component, and this is the only component
that folds.

For all other primes p, we have (−p
3 ) = −1, so G3(Fp) contains no edges. □

Step 3: New edges and edge attachment. From the factorization of the
polynomial Resℓ(X) into Hilbert class polynomials, determine the new edges; it
may not be possible to ascertain whether or not they attach. All new edges are
multi-edges by [ACNL+23, Cor. 3.15], but not all multi-edges are new edges.
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THE SPINE OF A SUPERSINGULAR ℓ-ISOGENY GRAPH 19

Loops cannot be attaching edges. We sketch the idea for characterizing multi-edges
and loops for ℓ = 3. Consider the resultant

(5.1)
Res3(X) = −33X2(X − 8000)2(X − 1728)2(X + 32768)2

×H−20(X)H−32(X)H−35(X).

The roots of (5.1) are j-invariants represented by vertices incident with multi-edges
in G3(Fp). We find the roots and generate congruence conditions on p under which
these roots are supersingular and in Fp. Furthermore, we determine values of p for
which distinct roots in Z coincide modulo p and place them into a list of excluded
p-values, denoted P3.

To determine which multi-edges are loops, we note that loops occur precisely
at the j-invariants listed in Lemma 5.1. Substituting these j-values into the poly-
nomial (5.1), we find the values of p for which multi-edges are loops and add these
p-values to the list of excluded primes P3.

We obtain three spine structure theorems, differentiated by number of folding
components, for all primes p outside the following set of excluded small values:

P3 = {5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 61, 71, 79, 89, 101, 139, 151, 199, 271}.

The spines for primes p with 2 ≤ p ≤ 31, along with the graphs Gℓ(Fp) and

Gℓ(Fp), are explicitly described in the document SmallCharacteristicGraph-

Description.pdf at [Hed25]. For the remaining primes in P3, the corresponding
information can be produced with the notebook Small Prime Information.ipynb.
The notebook Graph Viz.ipynp generates images of all three graphs. These sources
are all available at [Hed25]. For the remainder of this section, we only consider
primes p /∈ P3.

Theorem 5.3 (Spine structure, ℓ = 3, no folding). Suppose p /∈ P3. In the
following cases, no connected component of G3(Fp) folds and no vertex attachment
takes place. In addition to new loops, new edges are added as follows.

(1) None when

p ≡ 1, 13, 37, 43, 67, 73, 97, 109, 121, 157, 163, 169, 187, 193,

253, 277, 283, 289, 307, 313, 337, 361, 373, 397, 403, 421,

433, 457, 493, 517, 523, 529, 541, 547, 577, 589, 613, 643,

667, 673, 697, 709, 733, 757, 781, 787, 793, 817 (mod 840)

(2) One when

p ≡ 61, 103, 127, 181, 211, 223, 229, 241, 247, 331, 349, 367,

379, 409, 463, 481, 487, 499, 571, 583, 601, 607, 649, 661,

703, 727, 739, 769, 823, 829 (mod 840).

(3) Two that do no share any vertices when

p ≡ 19, 79, 139, 151, 319, 451, 619, 631, 691, 751, 799, 811 (mod 840)

(4) Three that do no share any vertices when

p ≡ 31, 199, 271, 391, 439, 559 (mod 840).

Theorem 5.4 (Spine structure, ℓ = 3, one component folds). Suppose p /∈ P3.
In the following cases, the connected component of G3(Fp) containing j = 0 folds
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20 TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

and no vertex attachment takes place. In addition to new loops, new edges are
added as follows.

(1) None when

p ≡ 17, 29, 53, 113, 137, 149, 173, 197, 221, 233, 257, 281, 293, 317,

353, 377, 389, 401, 437, 449, 473, 533, 557, 569, 593, 617, 641,

653, 677, 701, 713, 737, 773, 797, 809, 821 (mod 840).

(2) One when

p ≡ 41, 89, 101, 209, 269, 341, 461, 509, 521, 629, 689, 761 (mod 840)

Theorem 5.5 (Spine structure, ℓ = 3, two components folds). Suppose p /∈ P3.
In the following cases, the two connected components of G3(Fp) containing j = 1728
fold and get attached at j = 1728. In addition to new loops, new edges are added
as follows.

(1) None when

p ≡ 83, 107, 227, 323, 347, 443, 467, 563, 587, 683, 803, 827 (mod 840).

(2) One when

p ≡ 11, 23, 47, 143, 167, 179, 263, 383, 407, 491, 503,

527, 611, 647, 659, 743, 767, 779 (mod 840).

(3) Two that do no share any vertices when

p ≡ 59, 71, 131, 191, 239, 251, 299, 359, 419, 431, 599, 731 (mod 840).

(4) Three that do no share any vertices when

p ≡ 311, 479, 551, 671, 719, 839 (mod 840).

Note that Theorem 5.3 covers exactly the setting when Gℓ(Fp) has no edges.
Theorem 5.4 deals with the case when j = 0 is supersingular and j = 1728 is not,
while in Theorem 5.5, both j = 0 and j = 1728 are supersingular.

One obstacle to obtaining general explicit structure results about Sp
ℓ for p ≥

5, stated only in terms of congruence conditions on p, is the fact that degrees
of Hilbert class polynomials grow as the corresponding discriminant increases in
absolute value. Already for ℓ = 5, this becomes a problem: the polynomial Res5(X)
has degree 54 and decomposes over Z into linear, quadratic and quartic irreducible
factors. While formulas exist for the roots of degree 4 polynomials, the conditions
on p become increasingly complicated, and for irreducible factors of degree 5 and
higher, such root formulas may no longer exist.

6. Experiments on the Structural Properties of Isogeny Graphs

As mentioned in the introduction, Gℓ(Fp) is an optimal expander graph and in
fact a Ramanujan graph for p ≡ 1 (mod 12) (when neither 0 nor 1728 is supersin-
gular). The fact that we can partition the vertices of Gℓ(Fp) into two categories,
namely the Fp-vertices and the (Fp2 \Fp)-vertices, casts doubt upon the assumption

that Gℓ(Fp) behaves like a random graph. To shed further light on this question, we
gathered a substantial amount of data on graph-theoretic invariants of spines Sp

ℓ

for ℓ ≤ 5 and many primes p. We provide an in-depth study of a selection of these
invariants in this section.

18 Jun 2025 06:21:36 PDT

250201-Scheidler Version 2 - Submitted to LuCaNT



THE SPINE OF A SUPERSINGULAR ℓ-ISOGENY GRAPH 21

6.1. Relevant notions and definitions. Let G be a directed graph with
vertex set V (G) and edge set E(G). Recall that G is said to be strongly connected
if it contains a directed path between any two vertices. The distance d(v, w) from
a vertex v to a vertex w is the length (i.e. the number of edges) in a shortest path
from v to w in G. If no such path exists, we set d(v, w) = ∞. Also, d(v, v) = 0.

Definition 6.1 (Eccentricity). Let v ∈ V (G). The (out-)eccentricity of v is
the quantity

ecc+(v) = max{d(v, w) : w ∈ V (G) and d(v, w) ̸= ∞},

This notion captures the furthest distance required to travel from v to any
other vertex of G.

Definition 6.2 (Diameter). If every component of G is strongly connected,
then the diameter of G is the quantity

diam(G) = max{ecc+(v) : v ∈ V (G)}.

Otherwise, the diameter of G is infinite, i.e. diam(G) = ∞.

The diameter is the largest distance between any two vertices of G. Similarly,
the radius is the smallest distance between any two vertices of G.

Definition 6.3 (Radius). If every component of G is strongly connected, then
the radius of G is the quantity

rad(G) = min{ecc+(v) : v ∈ V (G)}.

Otherwise, the radius of G is infinite, i.e. rad(G) = ∞.

Finally, the center of G is the set of vertices of G for which the distance to any
other vertex is minimal (i.e. takes on the value of the radius).

Definition 6.4 (Center). If the radius of G exists, then the center of G is the
set

cen(G) = {v ∈ V (G) : ecc+(v) = rad(G)}.

As suggested by the name, center vertices can be thought of as “central” in
the sense that they are better connected to the entire graph compared to vertices
outside the center.

6.2. Diameter of the spine Sp
2 . In light of the structure theorems from Sec-

tion 4, the diameters of the connected components of Sp
2 can be explicitly computed

in almost all cases. Again, for this entire section assume p > 13.

Remark 6.5 (Diameters for ℓ > 2). One could use the structure theorems
from Section 5 to make similar statements about the diameter of Sp

3 (or even Sp
ℓ

for p ≥ 5). However, compared to the case ℓ = 2, less is known about the order r of
an ideal class of a prime ideal above an odd prime ℓ in the appropriate class group,
and it is harder to obtain concrete statements. Indeed, the ℓ > 2 case is similar to
the p ≡ 7 (mod 8) case for ℓ = 2 (Theorem 6.8), where the lengths of the cycles in
Gℓ(Fp) depend on the quantity r.
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22 TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

Following the structure theorems in Section 4, we determine the diameters of
the connected components of Sp

2 in the cases p ≡ 1 (mod 4) and p ≡ 3 (mod 8).
Examples illustrating each case can be found in SpineDiameter examples.ipynb

at [Hed25]. For p ≡ 7 (mod 8), we cannot determine edge attachments, which
prevents us from classifying the diameter of Sp

2 completely in this case.
Recall that (the undirected version of) G2(Fp) consists of pairs of vertices joined

by a single edge when p ≡ 1 (mod 4). Mapping into the spine Sp
2 , the generic behav-

ior for these components is to stack. The diameters of the connected components
of Sp

2 thus depend on the number of folds and edge attachments.

Theorem 6.6 (Spine Diameters, p ≡ 1 (mod 4) and ℓ = 2). Let p ≥ 17 with
p ≡ 1 (mod 4). There are h(−4p)/2 vertices in Sp

2 . The following congruence
conditions on p completely determine the diameters of the components of Sp

2 :

(1) If p = 29, then Sp
2 = G2(Fp), so it contains three vertices (diameter 2).

(2) If p ≡ 29, 101 (mod 120), then one connected component of Sp
2 has a

single vertex with a loop, one connected component has four vertices (di-
ameter 3), and the remaining h(−4p)/2 − 5 vertices are joined in pairs
(diameter 1).

(3) If p ≡ 41, 89 (mod 120), then one connected component of Sp
2 has four

vertices (diameter 3), and the remaining h(−4p)/2− 4 vertices are joined
in pairs (diameter 1).

(4) If p ≡ 13, 37, 53, 61, 77, 109 (mod 120), then one connected component of
Sp
2 is a single vertex with a loop, and the remaining h(−4p)/2−1 vertices

are joined in pairs (diameter 1).
(5) If p ≡ 1, 17, 49, 73, 97, 113 (mod 120), then Sp

2 consists of h(−4p)/2 ver-
tices joined in pairs, so each connected component of Sp

2 has diameter 1.

Proof. This is a direct result of applying Theorem 4.7 to the possible graph
structure of G2(Fp) given in Theorem 2.3. □

Theorem 6.7 (Spine Diameters, p ≡ 3 (mod 8) and ℓ = 2). Let p ≥ 17
with p ≡ 3 (mod 8). There are 2h(−p) vertices in Sp

2 . The following congruence
conditions on p completely determine the diameters of the components of Sp

2 :

(1) If p = 59, then Sp
2 is a single connected component formed by a tripod

edge joined by an edge to a folded tripod component (diameter 4).
(2) If p ≡ 11, 59 (mod 120) (p ̸= 59), then one connected component of Sp

2

consists of two adjacent vertices (diameter 1), one connected component
is 8 vertices in two tripod shapes joined by a double edge (diameter 5),
and the remaining 2h(−p) − 9 vertices are adjacent in groups of four in
tripod formation.

(3) If p ≡ 19, 43, 67, 83, 91, 107 (mod 120), then one connected component
of Sp

2 consists of two adjacent vertices (diameter 1) and the remaining
2h(−p) − 2 vertices are joined in groups of four in tripods from case (2)
of Theorem 2.3 (diameter 2).

Proof. Follows directly from applying Theorem 4.8 to Theorem 2.3. □

Theorem 6.8 (Spine Diameters, p ≡ 7 (mod 8) and ℓ = 2). Let p ≥ 17 with
p ≡ 7 (mod 8). There are h(−p) vertices in Sp

2 . Let r denote the order of the ideal
class generated by either of the prime ideals above 2 in the class group of Q(

√
−p).

If p ≡ 7, 23, 31, 47, 79, 103 (mod 120), then the diameter of the spine is (r + 3)/2.
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Proof. Follows directly from applying Theorem 4.9 to Theorem 2.3. □

If p ≡ 71, 119 (mod 120), then the diameter of Sp
2 is uncertain. Attaching edges

will approximately double the diameter of the resulting connected component, but
there are no clear congruence conditions for when this occurs. See Figure 6.1 for a
plot visualizing the mean diameters of the components of Sp

2 for a range of primes
p ≡ 7 (mod 8). The notebook used to collect the data in this figure can be found
in the file SpineDiameter.ipynb at [Hed25].

Figure 6.1. Mean spine component diameters in G2(Fp), for 250
primes p ≡ 7 (mod 8) with 23 ≤ p ≤ 7879.

6.3. Center of Gℓ(Fp). In this work, we computed the centers of supersingular
elliptic curve 2- and 3-isogeny graphs and counted the number of center vertices
belonging to their respective spines. The accompanying data are listed in the
file center012925.csv. They were generated with the notebook Center Data-

Generation.ipynb and plotted using Center DataProcessing.ipynb. All these
sources can be found at [Hed25].

Recall that the center of a graph (Definition 6.4) is the set of vertices with
minimal out-eccentricity. These vertices are well-connected to every other vertex in
the graph. Considering that the p-power Frobenius map is a graph automorphism
on Gℓ(Fp) that fixes the vertices of Sp

ℓ , one might expect the spine vertices to be

over-represented in the center of Gℓ(Fp). To see this, we note that for any vertex
v ∈ Fp, the set of distances from v displays a symmetry whereby distances can be

paired up. Specifically, if w is any vertex of Gℓ(Fp) and w
p its Frobenius conjugate,

then d(v, w) = d(v, wp). This property does not hold for vertices v ∈ Fp2 \ Fp. So
the set of distances from vertices in Fp only supports “half the randomness” of the
set of distances from vertices outside Fp.

In our first experiment, we counted the number of Fp-vertices in the center

of G2(Fp) as p ranges through the 2260 primes from 5 to 19997. Immediately, a
striking wave-like pattern emerged. In order to ascertain whether this behavior

18 Jun 2025 06:21:36 PDT

250201-Scheidler Version 2 - Submitted to LuCaNT

https://github.com/TahaHedayat/LUCANT-2025-Supersingular-Ell-Isogeny-Spine/blob/main/SpineDiameter.ipynb
https://github.com/TahaHedayat/LUCANT-2025-Supersingular-Ell-Isogeny-Spine/blob/main/center012925.csv
https://github.com/TahaHedayat/LUCANT-2025-Supersingular-Ell-Isogeny-Spine/blob/main/Center_DataGeneration.ipynb
https://github.com/TahaHedayat/LUCANT-2025-Supersingular-Ell-Isogeny-Spine/blob/main/Center_DataGeneration.ipynb
https://github.com/TahaHedayat/LUCANT-2025-Supersingular-Ell-Isogeny-Spine/blob/main/Center_Data\protect \discretionary {\char \hyphenchar \font }{}{}Processing.ipynb


24 TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

was particular to just the Fp-vertices in the center, we repeated the experiment for

the entire center of G2(Fp) using the same range of primes. This produced a very
similar pattern where the wave shapes are even more pronounced. The results are
plotted in blue in Figure 6.2. Analogous results for ℓ = 3 look similar.

We are indebted to Jonathan Love for the following explanation. The observed
wave pattern in Figure 6.2 closely matches the expected behavior of the minimum
value of an integer-valued distribution with slow growing mean – in this case, the
out-eccentricity whose minimum value (which is the radius) grows approximately as
log(p/12) – and very small standard deviation. Each wave corresponds to primes p
for which G2(Fp) has a fixed radius r. As p grows, so does p/12 (the number of

vertices in G2(Fp)), allowing fewer and fewer vertices with out-eccentricity r until

no more such vertices exist. At this point, the radius of G2(Fp) jumps to r + 1,
an out-eccentricity value taken on by many more vertices, which starts the next
wave. Our experiments confirm that the radius of G2(Fp) is generally only slightly
larger than log2(p/12) in the range of primes under investigation. Thus, if a wave
corresponding to a given radius r peaks at a prime p, then the peak of the next
wave, corresponding to radius r + 1, should be located close to 2p; in other words,
the distance between consecutive wave crests doubles each time. Our data bears
this out as well.

The green ‘Discrete Gaussian’ points in Figure 6.2 were obtained via a Discrete
Gaussian sampler as follows. For any prime p with p ≡ 1 (mod 12), simulate a
3-regular graph G with (p−1)/12 vertices. Assign an out-eccentricity to any vertex
of G by sampling from a normal distribution with mean 1.8 log(p) and standard
deviation 0.38 and plot the floor function of the sampled values. Although out-
eccentricities of adjacent vertices in G2(Fp) are in actuality not independent, it is
evident that this model matches our observed center size data quite closely.

Additionally, we thank Thomas Decru and Jonathan Komada Eriksen for the
observation that the likelihood of a vertex v of Gℓ(Fp) to belong to the center can
be estimated by the discrepancy between the theoretically possible and the actual
number of ways in which it can achieve ecc+(v) = r, where r is the radius of
Gℓ(Fp). Let Tℓ be the tree rooted at v where v has ℓ+ 1 children, all other interior
vertices have ℓ children, and all leaf nodes are located at level r. Then Tℓ models an
idealized version of the possible paths of length at most r from v in Gℓ(Fp), assuming

no cycles are encountered. The difference ϵ = |V (Tp)| − |(Gℓ(Fp))| is a measure of

the likelihood for a vertex of Gℓ(Fp) to lie in the center. For ℓ = 2, the number of

vertices in T2 is |V (T2)| = 1 + 3(2r − 1). The quantity ϵ = |V (T2)| − |V (G2(Fp))|,
scaled by 1/12 for best fit, is plotted in red in Figure 6.2.

To ascertain if elliptic curves with extra automorphisms had any effect on
the size of the center of G2(F2), we separated our data into congruence classes of
p (mod 4) and p (mod 3), and the resulting plots are found in Figure 6.3. No
definitive pattern emerges for the congruence classes of p (mod 3). While the data
points for both congruences classes of p modulo 4 are spread out over the entire
data range, higher center size counts (i.e. more data points in the wave peaks)
appear for p ≡ 3 (mod 4). This is to be expected because the radius r of Gℓ(Fp)
tends to be larger in this case and hence easier to attain. In particular, the vertex
associated to j = 1728 has only one neighbor distinct from itself, whereas a generic
vertex of Gℓ(Fp) is expected to have three neighbors. A larger radius r makes it
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Figure 6.2. Size of the center of G2(Fp) (in blue) and discrete
Gauss sampling with µ = 1.8 log(p), σ = 0.38, (in green). The
red segments represent the estimate ϵ/12 for a vertex of G(Fp) to
belong to the center, and the line y = p/12 (in black) approximates
the total number of vertices in G2(Fp).

easier for a random vertex to achieve out-eccentricity at most r and thus belong to
the center of Gℓ(Fp).

(a) p (mod 3) (b) p (mod 4)

Figure 6.3. Number of Fp-vertices in the center, sorted by con-
gruence class of p. On the left, blue and red represent p ≡ 1
(mod 3) and p ≡ 2 (mod 3), respectively. On the right, blue and
red correspond to p ≡ 1 (mod 4) and p ≡ 3 (mod 4), respectively.
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We also investigated the likelihood of 1728 belonging to the center of G2(Fp).
Overwhelmingly, this is not the case: out of the 1135 primes p ≡ 3 (mod 4) with
5 ≤ p < 20000, the only primes p for which 1728 lies in the center of G2(Fp) are
p = 7, 11, 19.

7. Conclusions and future work

The spine Sp
ℓ of the supersingular ℓ-isogeny graph Gℓ(Fp), our main protagonist,

is obtained by mapping the supersingular ℓ-isogeny graph Gℓ(Fp) into Gℓ(Fp) via
a natural two-step process. When passing from Fp-isomorphism classes of curves

to Fp-isomorphism classes, vertices of Gℓ(Fp) representing j-invariants of twists are
identified, leading to either stacking or folding of connected components of Gℓ(Fp).
Components may be joined via attachment at a vertex (for ℓ > 2 only, and only
for j-invariant 1728) or an edge. Passing from ℓ-isogenies over Fp to those over Fp

subsequently introduces new edges.
The authors of [ACNL+23] provided the first major insight into this arguably

surprisingly predictable process. Our structure theorems in Sections 4 and 5 offer
a refinement of their work by characterizing this behavior almost completely in the
cases ℓ = 2, 3 via congruence conditions on p, and outlining a general road map
for determining Sp

ℓ for larger primes ℓ. For any particular pair (ℓ, p), the graphs

Gℓ(Fp), Sp
ℓ and Gℓ(Fp) can be explicitly generated using our code at [Hed25]; for

small primes p and ℓ = 2, 3, they are described explicitly in a separate document
there and cited throughout this paper.

Our structure theorems make it possible to determine the diameter of Sp
2 , i.e.

the largest distance between any two vertices of Sp
2 . This is entirely explicit, and

shows that the diameter tends to be very small when p ̸≡ 7 (mod 8); in the case p ≡
7 (mod 8), the diameter is determined by the order of the ideal class represented
by a prime ideal above 2 in the class group of Q(

√
−p).

It is natural to ask how the spine is situated inside the full ℓ-isogeny graph.
To that end, we considered the centers of both Sp

2 and G2(Fp), i.e. the collection
of vertices whose furthest distance to any other vertex is minimal. We found that
the count of center vertices in Gℓ(Fp) defined over Fp, as well as the size of the

full center of G(Fp), follow a remarkable wave-like pattern as p grows. A similar
pattern was observed for ℓ = 3. The community-sourced explanation shows that
this pattern is evidence of supersingular elliptic curve isogeny graphs behaving as
random graphs.

Our continuing exploration of graph theoretic features of Sp
ℓ gives us new insight

into the cryptographically relevant heuristic assumptions we make about Gℓ(Fp).
Beyond the findings reported herein, we conducted extensive numerical experiments
generating a substantial volume of data on both internal and external connectivity
properties of Sp

ℓ , as well as counts and proportions of vertices in the periphery of Sp
ℓ

and Gℓ(Fp). Our findings raise a number intriguing questions (and answers, thanks
to our community); analyzing and understanding the results of our experiments is
very much a work in progress as we strive to shed further light on the structural
features and patters found in supersingular elliptic curve ℓ-isogeny graphs.
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[FFK+23] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz,
Lorenz Panny, and Benjamin Wesolowski, SCALLOP: scaling the CSI-FiSh, Public-

key cryptography—PKC 2023. Part I, Lecture Notes in Comput. Sci., vol. 13940,

Springer, Cham, [2023] ©2023, pp. 345–375. MR 4591147
[FM02] Mireille Fouquet and François Morain, Isogeny volcanoes and the SEA algorithm,

Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369,

Springer, Berlin, 2002, pp. 276–291. MR 2041091
[Gha24] Wissam Ghantous, Loops, multi-edges and collisions in supersingular isogeny graphs,

Advances in Mathematics of Communications 18 (2024), no. 4, 935–955.

[Hed25] Taha Hedayat, Lucant-2025-supersingular-ell-isogeny-spine, https://github.com/

TahaHedayat/LUCANT-2025-Supersingular-Ell-Isogeny-Spine, 2025.

[JW09] Michael J. Jacobson, Jr. and Hugh C. Williams, Solving the Pell equation, CMS
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