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Abstract

Let K be the totally real quintic field Q(2 cos(π/11)), and let A be the quaternion algebra over K
ramified only at four of its five real places. Then A∗/{±1} contains the (2, 3, 11) triangle group,
which is the last example in Takeuchi’s list (1977) of arithmetic triangle groups, and the only one
associated to a quaternion algebra over a field of degree at least 5. We study the Shimura curve
C = X0(p32) of genus 2 associated to a congruence subgroup Γ0(p32). We find that C has the
Weierstrass model

C : y2 = −28x6 − 76x5 − 11x4 − 30x3 − 91x2 + 164x− 52
= (2x− 1)(14x5 + 45x4 + 28x3 + 29x2 + 60x− 52), (1)

and determine the degree-33 Belyi function on C representing the cover X0(p32) → X (1) of Shimura
modular curves. The preimages of Q-rational points j on X (1) then yield infinitely many number
fields Fj with [Fj : Q] = 33 such that Gal(Fj/Q) ∼= ΣL2(F32) with quintic resolvent K. Searching
for examples with small ∆ = disc(Fj : Q) finds fields with ∆ as small as 2781130 (root-discriminant
45.52), as well as the field F−121 = Q[x]/(x33 − 6x22 + 14x11 + 2) with smaller Galois group and
∆ = 2321134 (root-discriminant only 23.17, now the LMFDB’s second-smallest for a number field
of degree 33). Along the way we find that J(C) is 31-isogenous with the Jacobian of the curve

C ′ : y2 = 8x5 − 23x4 + 38x3 − 7x2 − 16x+ 8, (2)

which has (JC′(K))tors ∼= Z/155Z, including a Galois orbit of five K-rational points on C ′ that
comprise an exotic “Weierstrass torsion packet”.

At several points in this investigation, data in the LMFDB and affiliated resources made the analysis
and computations simpler or more efficient. In turn the new number fields were added to the
LMFDB, which did not previously include any fields with these Galois groups.

Keywords: Shimura curve, Belyi map, Galois group, Weierstrass torsion packet

1 Introduction

Define a = 2 cos(π/11) = 1.9189859 . . . and K = Q(a), so K is the totally real quintic field with
LMFDB label 5.5.14641.1 . The ring of integers OK is Z[a]. We choose a as the generator because

1
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1 Introduction 2

it is the largest root of the “polredabs polynomial” used by the LMFDB;1 namely, the minimal
polynomial equation satisfied by a is

a5 − a4 − 4a3 + 3a2 + 3a− 1 = 0. (3)

Because K is the real subfield of the cyclotomic field Q(µ11), its Galois group Gal(K/Q) is
(Z/11Z)×/{±1} ∼= Z/5Z. We fix the generator σ of Gal(K/Q) corresponding to the generator
±2 of (Z/11Z)×/{±1}; explicitly, σ(a) = 2− a2 = − cos(2π/11).

Let A be the quaternion algebra overK ramified only at four of the five embeddingsK ↪→ R, namely
the embeddings taking a to σi(a) for i = 1, 2, 3, 4 (the other choices of a set of four embeddings are
equivalent under Gal(K/Q)). Because the i = 0 embedding is unramified, it gives an isomorphism
i : A ⊗KR

∼→ M2(R). Fix a maximal order OA ⊂ A, and let Γ be the subgroup of O×
A consisting

of elements of norm 1. Then i(Γ) is a discrete co-compact subgroup of SL2(R), so Γ/{±1} acts
on the upper half-plane H with quotient a compact Riemann surface. We denote this quotient
surface by X (1). For any ideal N of OK we define a congruence subgroup Γ(N) � Γ by Γ(N) =
{g ∈ Γ : g ≡ 1 mod N}, and thus a Shimura curve X (N) covering X (1). There is an isomorphism
OA/NOA

∼→ M2(OK/N) of OK-algebras, unique up to conjugation in Γ, which we use to define
the usual congruence subgroups Γ0(N),Γ1(N) with Γ(N) � Γ1(N) � Γ0(N) ⊆ Γ0(N), and the
corresponding Shimura curves X0(N),X1(N) and maps X (N) → X1(N) → X0(N) → X (1).

These Shimura curves and maps for A are of particular interest to us for the following reasons.
According to the list of arithmetic triangle groups in [Takeuchi 1977], Γ/{±1} is the (2, 3, 11) triangle
group in Aut(H), and is the only arithmetic triangle group coming from a quaternion algebra over
a number field of degree 5 or more. Since Γ is a triangle group, its covers by X0(N),X1(N),X (N)
are Belyi maps (finite covers of P1 ramified above only three points). When N is invariant under
Gal(K/Q), the curves X0(N),X1(N),X (N) are defined over Q, though in general the action of
SL2(OK/N) on X (N) is defined only over some cyclotomic extension of K. Other than the case
N = OK of X (1) itself, this first happens for N = p11 := (2 + a)OK , which is the prime of K over
the totally ramified rational prime 11, and for N = p32 := 2OK , which is the prime of K over the
inert rational prime 2. The corresponding Shimura curves X0(N) have genus 1 for N = p11 and 2
for N = p32, see for instance [Voight 2009, Table 4.5] (with dF = disc(K/Q) = 114 = 14641).

For N = p11 the group SL2(OK/N) is SL2(F11), and the curve X (p11) with its action of SL2(F11)
is the same as the classical modular curve X(11), because the curve X (p11) and its Shimura-Belyi
map to X (1) have the same ramification as X(11) → X(1) (the elliptic point of order 11 corresponds
to the classical cusp), and the monodromy generators determine the map. We choose the rational
coordinate j = jA on X (1) that takes values 1728, 0,∞ on the elliptic points, so that we can use
the same formulas for both maps.

For N = p32 there is no such shortcut. We compute equations for the genus-2 curve2 X0(p32) and the
degree-33 map X0(p32) → X (1). The genus and degree are barely small enough that it would have

1 The “polredabs polynomial” of a number field F is a canonical defining polynomial P1 ∈ Z[X] for F ,
named for the GP function that computes it. It minimizes the T2-norm

∑
P (z)=0 |z|

2 over all monic P ∈ Z[X]

such that F = Q[X]/(P ), and thus tends to have reasonably small coefficients.
2 We did not attempt to give explicit equations for the curve X1(p32), which is already of genus 32, let

alone the genus-1241 curve X (p32).
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1 Introduction 3

been feasible, albeit arduous, to find the curve and map using known techniques such as those of
[Elkies 2006, Elkies 2013]. Fortunately the computation was considerably streamlined and simplified
by the use of data already in the LMFDB and in affiliated resources (namely [CEHJMPV 2025]).

The degree-33 extension of function fields (X0(p32))(Q) → (X (1)(Q) has Galois group ΣL2(F32) =
SL2(F32)⋊Gal(F32/F2) acting on the 33 points of P1(F32), with quintic resolvent K. (The quintic
resolvent is the subfield of the Galois closure fixed by the index-5 normal subgroup SL2(F32). Here no
further cyclotomic extension is needed because F32 has characteristic 2 and K already contains µ2.)
By Hilbert irreducibility we get infinitely many distinct degree-33 extensions of Q by specializing
to rational points of X (1) with the same Galois group and quintic resolvent. The group ΣL2(F32),
in its transitive action on P1(F32), is called “33T55” in the LMFDB. The LMFDB did not include
any number fields with Galois group 33T55, and apparently none was known. Now that we have
the explicit map X0(p32) → X (1), we can generate infinitely many such fields Fj by specializing to
rational j ∈ X (1). We searched for specializations with small discriminant ∆. By far the smallest
∆ that we found was 2781130, for jA = −121; but this is a CM point on X (1) (though not on X(1)),
so we expect a smaller Galois group, and indeed the polredabs polynomial x33 − 6x22 + 14x11 + 2
for F−121 shows its Galois group is solvable (it turns out to be “33T9 = C33 : C10”). This field
was not in the LMFDB either; it is now the number field of second-smallest discriminant among
the LMFDB’s degree 33 fields. The smallest discriminant we found for a 33T55 field is 2781130, for
the field with jA = 287496 = 663 (which is a CM point on X(1) but not on X (1)), with polredabs

polynomial

x^33 - 7*x^32 + 20*x^31 + 4*x^30 - 132*x^29 + 132*x^28 + 1056*x^27

- 2464*x^26 - 1276*x^25 + 14608*x^24 - 17512*x^23 - 12100*x^22 + 90024*x^21

- 102608*x^20 - 104060*x^19 + 482064*x^18 - 177386*x^17 - 703978*x^16

+ 1731268*x^15 + 196988*x^14 - 4514752*x^13 + 3205048*x^12 + 7176752*x^11

- 9604496*x^10 - 5377240*x^9 + 16445836*x^8 + 468512*x^7 - 17393508*x^6

+ 995588*x^5 + 9545932*x^4 - 292820*x^3 - 2225432*x^2 + 102487*x + 219615 .

This is now the number field of sixth-smallest discriminant among the LMFDB’s degree 33 fields,
following the SL2(F32) field of discriminant 26215716 computed by Bosman [Bosman 2011].

The rest of this paper is organized as follows. We start (§2) by reviewing the degree-12 Belyi
map X0(11) → X(1) of classical modular curves, then show that it is the same as the Shimura-
Belyi map X0(p11) → X (1), and describe the roles of each of this curve’s five Q-rational points as
points on both X0(11) and X0(p11). In the next section we close in on the degree-33 Belyi map
X0(p32) → X (1) by combining information from the geometry of the map (§3.1) and from Hilbert
modular forms for K (§3.2) to guess the model (1) for X0(p32) (§3.3); then (§3.4) we find a degree-33
Belyi map on this curve, and prove (§3.5) that it has geometric Galois group SL2(F32) and is thus
the desired Shimura-Belyi map. Along the way we find another genus-2 curve C ′ whose Jacobian
has 155-torsion over K, generated by divisors (Q) − (P ) where P is a rational Weierstrass point
and Q is in a Gal(K/Q) orbit of K-rational points that give an exotic “Weierstrass torsion packet”
in the sense of [Poonen 2000, Poonen 2001]; we describe this situation briefly in §3.6. In the final
section (§4) we describe the search for fields Fj of small discriminant and list the best examples we
found (36).

18 Jun 2025 21:57:49 PDT

250201-Elkies Version 2 - Submitted to LuCaNT



2 The Shimura-Belyi map X0(p11) → X (1), and the Q-points on X0(p11) 4

2 The Shimura-Belyi map X0(p11) → X (1), and the Q-points on X0(p11)

We claim that as a Belyi map, the degree-12 cover X0(p11) → X (1) is identical with the cover
X0(11) → X(1) of classical modular curves. Indeed the two covers have the same geometric Galois
group PSL2(F11), and the monodromy generators g2, g3, g11 of X0(p11) → X (1) above the elliptic
points of index 2, 3, 11 have the same cycle structures 26, 34, (1, 11) as those of X0(11) → X(1) above
the elliptic points of index 2, 3 and the cusp respectively. These cycle structures, together with the
condition g2g3g11 = 1, determine g2, g3, g11 up to conjugation in PGL2(F11); so the covers must be
isomorphic as claimed.

We choose the projective coordinate jA on X (1) that takes the same values 1728, 0,∞ at the elliptic
points of index 2, 3, 11 as the classical j-invariant on the elliptic points of index 2, 3 and the cusp.
We can then re-use the known equations for X0(11) and the cover X0(11) → X(1) in the Shimura
setting. The curve has Weierstrass equation y2 + y = x3 − x2 − 10x− 20, and

j =
1

x− 16

(
−11x6 + 148x5 + 643x4 − 2704x3 − 6780x2 + 1781x+ 3308

−(x5 + 23x4 − 697x3 + 1031x2 + 2170x+ 353)y
)
. (4)

eliminating y yields a relation j2 +A(x)j +B(x) = 0 where A,B are determined by

B(x) = −(x4 − 20x3 + 62x2 + 116x+ 97)3,

17282 − 1728A(x) +B(x) = −(x6 − 30x5 + 243x4 − 256x3 − 1053x2 + 654x+ 7793)2. (5)

It is well-known that the elliptic curve X0(11) has Mordell-Weil group Z/5Z. We choose the
generator T = (16,−61), and list for each n = 0, 1, 2, 3, 4 the (x, y) coordinates of nT , and the value
of j, computed from (4) or (for n = 4) from (5):

n (x(nT ), y(nT )) j(nT ) = jA(nT ) X0(11) X0(11)
0 (∞,∞) ∞ cusp i∞ CM(−(2 + a)3)
1 (16,−61) ∞ cusp 0 e11 = CM(−(2 + a))
2 (5,−6) −121 = −112 121a1, c2 CM(−(2 + a)3)
3 (5, 5) −32768 = −215 121b1,b2 = CM(−11) non− CM
4 (16, 60) −24729001 = −131311 121a2, c1 non− CM

(6)

It remains to explain the table’s columns labeled X0(11) and X0(11). The Fricke involution w11

of X0(11) switches the two cusps, so it must be the map P 7→ T − P . In particular 3T is the fixed
point. We recognize j(3T ) = −215 as the j-invariant of elliptic curves such as 121b1 and 121b2 with
complex multiplication (CM) by the quadratic order of discriminant −11; such an elliptic curve is
11-isogenous with its quadratic twist by Q(

√
−11) (and indeed 121b1 and 121b2 are related by such

a quadratic twist). The remaining points 2T, 4T yields j-invariants −112 and −131311 of non-CM
elliptic curves that are related by an 11-isogeny.

The Shimura curve X0(11) also has an involution w, coming from the normalizer of Γ0(p11) in
SL2(R). But this involution is not the same as the Fricke involution P 7→ T −P of X0(11). Instead
this involution must take T to itself, because T is the simple pole of jA and is thus the unique elliptic
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3 The Shimura-Belyi map X0(p32) → X (1) 5

point of X0(11), related to itself by a “p11-isogeny”. Since jA = ∞ is an elliptic point of order 11,
it is a CM point corresponding to the quadratic extesion Q(µ11) of K generated by

√
−(2 + a).

The pole of jA of multiplicity 11 at (x, y) = (∞,∞) then gives a p11-isogeny between jA = ∞ and
jA(w(∞,∞)) = jA(2T ) = −121. Thus these are also CM points on X0(11), but of discriminant
−(2+a)3. Here it is the points 3T, 4T that yield non-CM points j = −215 and j = −131311 related
by a p11-isogeny. We shall encounter both this isogenous pair and the CM point jA = −121 in the
final section of this paper.

3 The Shimura-Belyi map X0(p32) → X (1)

3.1 Geometry

We start by using the geometry of the Belyi map C = X0(p32) → X (1) and the involution w
of X0(p32) to constrain the preimages on C of the elliptic points on X (1). We then use the quotient
map X1(p32) → X0(p32) = C to further constraint the arithmetic of JC .

Since X (1) has genus zero, we identify a map C → X (1) with a rational function on C by choosing
a rational coordinate on X (1). We retain the coordinate of the previous section, which takes
the values 1728, 0,∞ on the elliptic points of indices 2, 3, 11 respectively. Again we denote the
resulting function on C by jA. The monodromy generators above the elliptic points are elements
of order 2, 3, 11 in SL2(F32); thus their cycle structures are respectively (1, 216), 311, 113. (Check:
the Euler characteristic of C is then 33χ(P1) − 16 − 2 · 11 − 10 · 3 = 66 − 16 − 22 − 30 = −2,
consistent with g(C) = 2.) We denote by P the unique multiplicity-1 preimage of 1728. This is
the unique elliptic point on X0(p32), and is thus fixed by the involution w of X0(p32) coming from
the normalizer of Γ0(p32) in SL2(R). It turns out that w is the hyperelliptic involution of X0(p32),
making P a Weierstrass point. This could be checked directly by counting fixed points of w: the
hyperelliptic involution fixes the six Weierstrass points, while a non-hyperelliptic involution of a
genus-2 curve fixes only four points. Instead of attempting to do this calculation directly, we give
an alternative argument in §3.2 using the decomposition of the relevant space of Hilbert modular
forms. Alternatively, we can add the statement that w is hyperelliptic to several other guesses that
we shall make on the way to computing a Belyi map, statements that we justify in §3.5 by proving
that our map has the correct Galois group.

The ramification behavior of our map means that the polar divisor of our rational function jA ∈
Q(C), and the zero divisors of jA and jA − 1728, are given by

(jA)∞ = 11D3, (jA)0 = 3D11, (jA)1728 = 2D16 + (P ) (7)

for some divisors D3, D11, D16 of degrees 3, 11, 16 on C. Because the map is ramified only above
{1728, 0,∞}, the differential djA has divisor

(djA) = (djA)0 − (djA)∞ = 2D11 +D16 − 12D3. (8)

Now the three divisors in (7) are linearly equivalent to each other, and the divisor of a differential of
a nonconstant function is linearly equivalent to the canonical divisor K on C. This gives relations

18 Jun 2025 21:57:49 PDT

250201-Elkies Version 2 - Submitted to LuCaNT



3 The Shimura-Belyi map X0(p32) → X (1) 6

among D3, D11, D16, (P ),K in Pic(C):

11D3 ∼ 3D11 ∼ 2D16 + (P ), 2D11 +D16 − 12D3 ∼ K (9)

The first equation gives
D3 ∼ 3D1, D11 ∼ 11D1 (10)

where D1 is the degree-1 divisor 4D3 −D11. Then

D16 ∼ K − 2D11 + 12D3 ∼ K − 22D1 + 36D1 = K + 14D1, (11)

whereupon the remaining condition 3D11 ∼ 2D16 + (P ) of (9) gives 33D1 ∼ 2K + 28D1 + (P ) and
finally

5D1 ∼ 2K + (P ). (12)

Since P is a Weierstrass point, K ∼ 2(P ), so (12) gives 5D1 ∼ 4(P ) + (P ) = 5(P ), whence
5(D1 − (P )) ∼ 0. (The factor of 5 can be identified with the numerator of the factor

5

66
= 1− 1

2
− 1

3
− 1

11
(13)

in the formula for the hyperbolic area of X (1).) It remains to show that the class [D1 − (P )] ∈
Pic0(C) = JC is actually 5-torsion, not zero. Suppose it were zero; that is, suppose D1 ∼ (P ). Then
D3 ∼ 3D1 ∼ 3(P ) would imply that P is one of the points in D3: by Riemann-Roch h0(3P ) = 2 =
h0(K) = h0(2P ). But the divisors (jA)∞ = 11D3 and (jA)1728 = 2D16 + (P ) are disjoint, so D3

cannot contain P . 2

The curve C = X0(p32) also admits a cyclic cover X1(p32) → X1(p32)/F
∗
32

∼= X0(p32) over K. The
map is unramified because it is cyclic of degree 31, and the only elliptic point of X0(p32) has index
2 which is coprime with 31. By Kummer theory this unramified cyclic cover gives a subgroup of JC
that isomorphic over K with µ31. We shall use this to choose C from a pair of candidate curves
whose Jacobians are related by a 31-isogeny.

3.2 Modular forms

We next use modular forms to surmise that JC is in the isogeny class of the simple factor of the
Jacobian of X0(242) corresponding to the modular form 242.2.a.f .

The LMFDB does not at present include Shimura modular forms (other than those associated to
congruence subgroups of SL2(Z)), but we can get at JC indirectly via Hilbert cusp forms of parallel
weight 2 with base field K. We find that at level p32 there is a unique Hecke orbit of such forms,
namely the orbit labeled 5.5.14641.1-32.1-a, with dimension 2 (as expected because C has genus 2)
and eigenvalue field Q(

√
5). This also gives us a proof that the involution w of X0(p32) must be

hyperelliptic: otherwise this space of cusp form would split into +1 and −1 subspaces.

Since the level is invariant under Gal(K/Q), so are the Hecke eigenvalues, and in particular the
Hecke eigenvalue at a prime p depends only on its norm Np. Consulting the LMFDB’s “home page”
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3 The Shimura-Belyi map X0(p32) → X (1) 7

for 5.5.14641.1-32.1-a, we tabulate Hecke eigenvalues for Np ≤ 131, and also for p = 3OK , which
has norm 35 = 243 and is the first p above a prime inert in K that does not divide the level:

Np 11 23 32 43 67 89 109 131 · · · 243 · · ·
ap e 2e 1 −9e− 3 5e+ 8 −5e− 5 8e+ 14 11e · · · 20e+ 4 · · · (14)

Here e is a solution of e2 + e − 1 = 0. In particular the coefficient field is Q(e) = Q(
√
5), and JC

has K-endomorphisms by Z[e]. But C is defined over Q, and Gal(K/Q) has no nontrivial action
on Z[e], so the endomorphisms of Z[e] on JC must be defined over Q.

Since JC is a RM surface over Q, it is a simple factor up to isogeny of some modular Jacobian
J0(N) = JX0(N), and thus corresponds to a Gal(Q/Q)-orbit of modular eigenforms ϕ of weight 2
for Γ0(N). Since C has good reduction away from {2, 11}, the level N must be of the form 2e211e11

for some integers e2, e11. We search the LMFDB and find that the first spaces of such forms with
coefficients in Q(

√
5) occur for N = 242 (with (e2, e11) = (1, 2)), namely 242.2.a.d and 242.2.a.f ,

which are related by quadratic twist by Q(
√
−11). For a rational prime p ≡ ±1 mod 11, the qp

coefficient of ϕ should equal the Tp eigenvalue of 5.5.14641.1-32.1-a where p is any of the primes
of K with Np = (p). We find that this condition is already satisfied by 242.2.a.f , at least for the
primes p ≤ 131 tabulated in (14). (Note that the LMFDB page for 242.2.a.f gives the eigenvales in
terms of β = −e. For classical modular forms the LMFDB gives only 100 coefficients, but this is
enough information to extend the q-expansion further in Magma.) Moreover, the q3 coefficient a3
of 242.2.a.f is −e+1, and we calculate that the T3OK

eigenvalue 20e+4 of 5.5.14641.1-32.1-a equals
λ5 + λ̄5 where λ, λ̄ are the roots of the characteristic equation F 2 − a3F + 3.

At this point we are almost certain that 242.2.a.f is our desired modular form ϕ. We cannot claim
to have proven this, because for all we know ϕ might have level N = 2e211e11 beyond the LMFDB’s
range. If we knew in advance that N = 242 then we would already have a proof.3 Once we surmise
an explicit Weierstrass model for the curve, and find a degree-33 Belyi map on that curve, we shall
be able to identify that map with the Shimura-Belyi map X0(p32) → X (1) by proving that it has
the correct Galois group.

3.3 The curves C ′ and C

We next combine the information from §§3.1,3.2 to surmise an equation for X0(p32).

Here we were not able to simply look up the curve in the LMFDB. The LMFDB’s 66158 genus-2
curves over Q include 99 whose Jacobians’ Q-endomorphism algebra are orders in real quadratic
fields, in 92 isogeny classes, each linked to a classical modular eigenform ψ of weight 2 with coef-
ficients in the same quadratic field. But this is a small fraction of the LMFDB’s 80387 weight-2
eigenforms with quadratic coefficients. Moreover, even when ψ does link to an isogeny class of
curves, the LMFDB might not contain every curve in the class. This already happens for the first

3 We did guess that N = 242 by analogy with the known case of X0(p27) for the (2, 3, 7) triangle group.
This triangle group is Γ(1) for the quaternion algebra over Q(2 cos(π/7)) ramified only at two of this
field’s three real embeddings, and we found in [Elkies 2006] that the Shimura curve X0(p27), with p27 =
3Z[2 cos(π/7)], is an elliptic curve of conductor 147 = 3172, suggesting N = 21112 for the presesnt curve
X0(p32).
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3 The Shimura-Belyi map X0(p32) → X (1) 8

two such ψ, of levels N = 23 and N = 29, where the LMFDB contains a genus-2 curve of discrimi-
nant N2 whose Jacobian also has discriminant N2, but does not contain the modular curve X0(N)
because its discriminant (236 or 295) falls outside the LMFDB’s range |∆| ≤ 106. The homepage
of our form 242.2.a.f does not link to any genus-2 curves.

Given an eigenform ψ for Γ0(N) whose coefficients generate a quadratic field, and which thus
corresponds to an isogeny class of abelian surfaces, one can try to find a genus-2 Jacobian in the
isogeny class by numerically integrating ψ over cycles of X0(N) to compute a period lattice to enough
precision that its Igusa invariants can be recognized as rational numbers. In [CEHJMPV 2025] we
report on a computation that tried this for each of the 16929 such ψ with N ≤ 104. We succeeded
for most of them, including all cases where ψ has coefficients in a field of narrow class number 1
such as Q(

√
5) and Q(

√
2) and the Q-endomorphism algebra is contained in the coefficient field, in

which case the isogeny class always contains a surface with a principal polarization defined over Q.
In particular we have already found a curve C ′ whose Jacobian is in the isogeny class corresponding
to 242.2.a.f . In the github repository (see the end of the bibliographic entry for [CEHJMPV 2025])
this curve is reported as [[35,79,77,43,14,2],[0,-1,-1]], which is to say

y2 − (x2 + x)y = 2x5 + 14x4 + 43x3 + 77x2 + 79x+ 35; (15)

completing the square and substituting x − 2 for x gives a reduced model in narrow Weierstrass
form,

C ′ : y2 = 8x5 − 23x4 + 38x3 − 7x2 − 16x+ 8. (16)

This looks promising, because C ′ has a Weierstrass point (at infinity), and JC′ has a 5-torsion point
over Q, represented by the divisor x2 − x− 1 = 0, y = 4x+ 1 with Weil function

4x5 − x4 + 14x3 + 17x2 − 2x− 4− (3x2 + 5x+ 2)y. (17)

Moreover, X0(p32) must have good reduction outside {2, 11}, and C ′ satisfies this condition. (This
does not follow automatically from the good reduction of JC′ outside {2, 11}; see 20.) Over K,
the curve C ′ also has good reduction at p11: the right-hand side factors as 8(x + 3)5 mod 11, and
translating x to x− 3 yields

y2 = 8x5 − 13 · 11x4 + 94 · 11x3 − 31 · 112x2 + 56 · 112x+ 40 · 112; (18)

so we can choose a local uniformizer π at p11, scale (x, y) to (π2x, π5y), and divide through by π10 to
get a model that remains smooth mod p11. But we saw that the Jacobian of X0(p32) must contain
a subgroup µ31 over K; it turns out that JC′ instead contains a subgroup Z/31Z, which makes C ′

a curve of independent interest (see §3.6 below), but means C ′ cannot be our desired curve X0(p32).

This suggests that X0(p32) might be a curve whose Jacobian is the quotient of JC′ by its 31-torsion
group. We use period matrices to compute a putative equation for such a curve:

y2 = −28x6 − 76x5 − 11x4 − 30x3 − 91x2 + 164x− 52
= (2x− 1)(14x5 + 45x4 + 28x3 + 29x2 + 60x− 52). (19)

This curve, too, has a rational Weierstrass point, good reduction outside {2, 11}, good reduction
at p11 over K, and a Jacobian with a Q-rational 5-torsion point. Our isogeny class contains the
Jacobians of at least two further curves, related by 5-isogenies with those we already found, namely

y2 = −7(256x6 − 16x5 + 40x4 − 1249x3 + 56x2 − 784x),

18 Jun 2025 21:57:49 PDT

250201-Elkies Version 2 - Submitted to LuCaNT



3 The Shimura-Belyi map X0(p32) → X (1) 9

y2 = 8x5 − 1199x4 − 7546x3 + 10769x2 + 67760x− 100672. (20)

But neither of them can be X0(p32). Indeed each curve in (20) fails two criteria: neither curve’s
Jacobian has a rational 5-torsion point, and each curve has bad reduction also at 7 (though their
Jacobians still have good reduction outside {2, 11}).

We found no further Jacobians in this isogeny class. We thus proceed on the assumption that
X0(p32) = C.

3.4 The Shimura-Belyi map

We now compute the Shimura-Belyi map using the known technique of mod-p search followed by
p-adic lift. We choose p = 5, the smallest prime at which the elliptic points j = 0, 1728 are distinct.
If we had not surmised C in advance, we would have to try all pairs (C,D) of a genus-2 curve
C mod 5 with a 5-torsion class D ∈ JC , which would be more complicated to implement and would
take about 53 times longer to run. Starting from C the search took little more than an hour on two
processors, each trying a different choice of D (since there are two choices up to the hyperelliptic
involution).

It is convenient to put the Weierstrass point P at infinity, even though this makes the coefficients
of C larger. We thus work with the model

y2 = 64x5 − 1095x4 − 1248x3 − 1224x2 − 640x− 112. (21)

The divisors that differ from K by 5-torsion are

D : 8x2 + 3x+ 2 = 0, y = (77x− 66)/8; D′ : x2 + x+ 2 = 0, y = 37x− 2; (22)

and their images under the hyperelliptic involution ι : (x, y) 7→ (x,−y). (Here and later we do not
reduce mod 5 because we shall soon need the same formulas over the 5-adic numbers.) We find the
functions

f1 = 32x3 + 29x2 + 24x− (y + 4), f2 = 16x3 + 21x2 + y + 12 (23)

with divisors (f1) = 2D + ι∗D′ − 6P , (f2) = D + 2D′ − 6P .

We search for sections s3, s11 of 5P −D and 13P −D′, which we normalize by setting the “leading
coefficient” (coefficient of xy and x5y respectively) equal 1. Thus

s3 = y − 77x− 66

8
+ c0(8x

2 + 3x+ 2) (24)

for some c0 ∈ F5, and
s11 = A(x)(y − (37x− 2)) +B(x)(x2 + x+ 2) (25)

for some monic polynomial A of degree 4 and some polynomial B of degree at most 4. Thus we
have 510 candidates, which is just under 107. For each s3 and s11 we compute the sections

s113 ι
∗(f41 f

2
2 )

(8x2 + 3x+ 2)10(x2 + x+ 2)4
,

s311f1ι
∗f2

(8x2 + 3x+ 2)(x2 + x+ 2)3
(26)
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3 The Shimura-Belyi map X0(p32) → X (1) 10

of 35P−D, find the linear combination that cancels the leading x15y coefficient and is thus a section
of 34P − D, and test whether its norm from C to P1 (which is a degree-32 polynomial in x) is a
square. This finds two solutions mod 5, one of which is spurious (the linear combination is actually
a section of 32P − D); the other search, with D,D′ replaced by D′, ι∗D, finds only a spurious
solution.

We now take the vector of coefficients of our s3 and s11, lift it to Z5, and regard it as an approxi-
mation to the actual 5-adic solution. Four iterations of Newton’s algorithm improve the error from
O(5) to O(516), which is enough to recognize c0 as −17/8 and the quartics A(t) and B(t) as

A(x) = x4 +
115x3 + 10x2 + 356x− 248

3
,

B(x) =
545x4 + 2991x3 + 3298x2 − 12620x− 1464

3
. (27)

We finally obtain our Shimura-Belyi function as the ratio of the sections (26) of 35P −D,‘composed
with the fractional linear transformation of P1 that puts the ramified points at 1728, 0,∞.

3.5 Conclusion of the proof

At this point we have found a Belyi map whose monodromy generators g2, g3, g11 ∈ S33 have the
same cycle structures as those of the Shimura-Belyi map X0(p32) → X (1). For the degree-12 map
X0(p11) → X (1) the cycle structures suffice to determine the map, because the cycle structures
(26), (34), (1, 11) together with the condition g2g3g11 = 1 determine g2, g3, g11 uniquely up to con-
jugation in S12. This is no longer true for the cycle structures (1, 216), (311), (113) in S33.

4 We next
show that the Belyi map constructed in §3.4 has geometric Galois group SL2(F32). This will suffice,
because in SL2(F32) the equation g2g3g11 = 1 does have a solution in elements of order 2, 3, 11 that
is unique up to conjugation in ΣL2(F32) ⊂ S33.

Denote the geometric Galois group by G0, and the Galois group over Q by G. We soon guess that
G0 and G must be SL2(F32) and ΣL2(F32) respectively by specializing jA to “random” rational
numbers and computing the Galois group of the resulting degree-33 extension of Q, or by factoring
specializations modulo many primes. But such calculations cannot prove that G0 and G are the
expected groups. We do, however, learn that G0 and G must contain SL2(F32) and ΣL2(F32)
respectively. Indeed it is already enough to take jA = −2 and factor the resulting polynomial
mod 23: there are two linear factors and an irreducible factor of degree 31, so G and G0 must
contain elements of order 31, and the only transitive subgroups of S33 with such elements are
SL2(F32),ΣL2(F32), A33, S33. Moreover G0 cannot be ΣL2(F32) or S33, because it is generated by
even permutatios of orders 2, 3, 11.

4 We construct a counterexample as follows. Let α = ā+1 ∈ F32, and let g2, g3 ∈ S33 be the permutations
z 7→ z + α and z 7→ (z + 1)/z of P1(F32), correspondinging to the matrices [ 1 α

0 1
], [ 1 1

1 0
] ∈ SL2(F32). Then

g2g3(z) = (āz + 1)/z corresponds to the matrix [ ā 1
1 0

] of trace ā, so g2g3 has order 11. Now let g′2 = τg2τ
where τ is the simple transposition (0 1), and let g′11 = (g′2g3)

−1. Then g′2, g3 , g
′
11 have the same cycle

structures as g2, g3, g11 and satisfy the same equation g′2g3g
′
11 = 1. But g′2g

′
11
3
has order 70, so the subgroup

generated by g′2, g3 , g
′
11 cannot be isomorphic with SL2(F32). Indeed that subgroup is the full alternating

group A33, because g′2g
′
11
2
has order 31 and A33 has no proper transitive subgroup whose order is a multiple

of 31 · 70.
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3 The Shimura-Belyi map X0(p32) → X (1) 11

But it takes more work to exclude the possibility that G0 = A33. We use the method that we
introduced in [Elkies 2013, §3] (and was later used also in [Barth–Wenz 2019]). Here we show that
G0 does not act transitively on the

(
33
4

)
4-element subsets of the 33 roots. If it did, then we would

have a degree
(
33
4

)
cover C4 of P1 by a connected curve of genus at most

1 +
1

2

(
1− 1

2
− 1

3
− 1

11

)(33
4

)
= 1551, (28)

so over a q-element field Fq the curve C4 would have at most q+ 1+ 2 · 1551√q points by the Weil
bound. Since we expect that in fact G0 = SL2(F32), the action should have 5 orbits, and so C4 will
be a union of 5 curves and should have about 5q points if Fq contains a quotient field of OK . So the
assumption G0 = A33 will yield a contradiction if q is large enough, and we expect to succeed if q
is comfortably larger than (2 · 1551/(5− 1))2. We chose q = 106 +33, the smallest prime above 106

that splits in K. Using the Lemma in [Elkies 2013, §3] we counted most of the points of Fq(C4) by
factoring q polynomials over Fq and discarding the handful that had repeated factors. This took
under 10 minutes on a single processor. We found that |C4(Fq)| ≥ 4779840, while the Weil bound
for a curve of genus at most 1551 is |C4(Fq)| ≤ 4102085. This contradiction shows that G0 ̸= A33

and completes the proof.

3.6 Scenic detour:
155-torsion in JC′(K) and an exotic Weierstrass torsion packet on C ′

Using the table (14) of Hecke eigenvalues or otherwise, we soon see that #JC(K)tors | 155; for
example, #JC(OK/p11) = 155, and there can be no 11-torsion because #JC(OK/p) = 4 · 155
for Np = 23. The same bound thus holds for any other abelian surface K-isogenous with JC .
Computing #JC(OK/p) for further primes p suggests that JC(OK/p) has 155-torsion for every
prime p of OK other than p32, and thus that the isogeny class may contain a surface with 155-torsion
over K.

We find that in fact JC′(K) ∼= Z/155Z. We already know a 5-torsion point of JC′(Q), so we need
only find 31-torsion. A search for points of low height on C ′(K) other than the Weierstrass point
soon finds the Gal(K/Q) orbit of

Q : (x, y) = (a4 − 2a3 + a, 11(13a4 − 35a3 + 7a2 + 28a− 8)) (29)

We find that the function

f = y + (a3 − a2 − a)(4x2 − 20x+ 14) + (7x2 − 13x+ 8) (30)

on C ′ has divisor 2Q + ι(σQ) + D − 5(P ), where ι is the hyperellitic involution, P is the Weier-
strass point at infinity, σ is our generator of Gal(K/Q) taking a to 2 − a2, and D is the divisor
2x2 − 10x+ 7 = 0, y = −22x+33/2 such that 5D ∼ 5K. Since ι(σQ)+σQ ∼ K ∼ 2(P ), we deduce

(σQ)− (P ) ∼ 2((Q)− (P )) +D −K. (31)

Applying σ, and noting that P,D,K are σ-invariant, gives

(σ2Q)− (P ) ∼ 2((σQ)− (P )) +D −K ∼ 4((Q)− (P )) + 3(D −K), (32)

18 Jun 2025 21:57:49 PDT

250201-Elkies Version 2 - Submitted to LuCaNT



4 Specializations to ΣL(F32) extensions of Q with low discriminant 12

and then
(σ3Q)− (P ) 8((Q)− (P )) + 7(D −K), (33)

(σ4Q)− (P ) 16((Q)− (P )) + 15(D −K), (34)

and finally
(Q)− (P ) = (σ5Q)− (P ) ∼ 32((Q)− (P )) + 31(D −K). (35)

Hence 31((Q) − (P )) is equivalent to the 5-torsion divisor 31(D − K), whence (Q) − (P ) is a
155-torsion divisor.

Thus C ′(Q) contains at least 10 non-Weierstrass points P ′ such that (P ′)− (P ) is torsion, namely
the Gal(K/Q) orbits of Q and ιQ. This is an “unlikely intersection” for a curve of genus 2 with
no automorphisms other than ι and the identity: such curves vary over a 3-dimensional moduli
space, so we might expect at most three pairs of non-Weierstrass points in the “Weierstrass torsion
packet”. I thank Bjorn Poonen for using his gp program to check that there are no further such P ′

on our curve. Poonen notes that already in [Leprévost 1995, p.293] there is an example of a curve
C27 with six pairs, all in C27(Q) and differing by 27-torsion divisors; but our C ′ seems to have the
largest torsion order among the known examples of such unlikely intersections of a genus-2 curve C
with JC(Q)tors.

4 Specializations to ΣL(F32) extensions of Q with low discriminant

We now have a family of degree-33 fields Fj with generic Galois group ΣL(F32). For any rational
j = jA ̸= 0, 1728, we can compute the discriminant ∆ of Fj ; this does not require factoring a large
polynomial discriminant because we know that all prime factors of ∆ other than 2 and 11 appear in
the denominator of j or the numerator of j or j− 1728. We first tried all j ∈ Z with |j| ≤ 10 · 1728,
and also all j = 1728m/n for small m,n. This revealed the outlier F−121 with ∆ = 2321134; this is
the only example we found for which Gal(Fj/Q) is smaller than ΣL(F32).

Listing j’s in order of increasing ∆, we recognized several of the best j values as j-invariants of
elliptic curves with small and smooth conductor. We thus asked the LMFDB for the list of all
elliptic curves in the database whose conductors are {2, 3, 5, 7, 11}-smooth, and tried all of their
j-invariants. There were 137612 curves, with 6086 distinct j-invariants other than 0, 1728. This
found several new small values of ∆, corresponding to j-values outside the range of our first search.

In (36) we list the 17 values of jA that yield the fields Fj of smallest ∆ that we found. In each
case we list also: the LMFDB labels of the elliptic curves Emin of minimal conductor that have
j-invariant jA; the factorization of ∆: and the root-discriminant ∆1/33 rounded to the nearest .01
(which is the LMFDB’s convention), as a measure of the size of ∆.

Two of those fields arise more than once. The triple coincidence includes jA = −215 and jA =
−131311, which we already know are related by a p11-isogeny and thus give rise to isomorphic
Galois representations mod p32, but we have no explanation for the third value of jA that yields
the same field. Nor can we explain the double appearance of the field of discriminant 2365301124.
Curiously jA = −153 and jA = 2553 yield different fields of the same discriminant 2327161134; they
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4 Specializations to ΣL(F32) extensions of Q with low discriminant 13

are j-invariants of 2-isogenous elliptic curves with complex multiplication in discriminant −7 and
−28, but again we have no explanation (except that we might expect the occasional collision of ∆’s
when both fields are ramified above the same primes), and it might be a mere curiosity.

jA Emin ∆ rd = ∆1/33

−121 = −112 121a1, 121c2 2321134 23.17
287496 = 663 32a1, 32a2 2781130 45.52
10976 = 2573 128a1,b1, c1,d1 2881128 48.57{

−14641/80 = −114/245;

−616295051/64000 = −(23 · 37/40)3

{
1210c1, 1210j1;

1210d1, 1210i1
2365301124 52.63

−937024/9 = −26114/32 11616f1, g1, v1,w1 2623301124 57.11
2048 = 211 200b2, 200d2 2385161134 57.34

−3375 = −153 49a2, 49a4 2327161134 59.51
16581375 = (3 · 5 · 17)3 49a1, 49a3 2327161134 59.51

54000 = 243353 36a1, 36a2 2523161134 60.07
8000 = 203 256a1, a2,d1,d2 2781134 60.88

−121945/32 = −2935/25 50a2, 50b3 2485221128 61.30
−3072 = −2123 216a1, 216d1 2403381128 62.79

43307231/82944 = 112713/(21034) 726a1, 726f1 2323301134 62.89
−32768 = −215;

−24729001 = −131311;

−128667913/4096 = −227311/212


121b1, 121b2;

121a2, 121c1;

242a1, 242b1

2321148 64.07

(36)

Six of the seventeen jA values are among the thirteen rational j-invariants of CM curves, for dis-
criminants −7,−8,−11,−12,−16,−28. Of the remaining seven such discriminants, −3 and −4
correspond to ramified points jA = 0, 1728 of the cover, and the discriminant −27 value −16033
(curves 27a1, 27a2) was already on our list of candidates; we added the remaining four (discriminants
−19,−43,−67,−163), but found no further small ∆. Three of the jA values are j-invariants of non-
CM elliptic curves involved in sporadic isogenies, of degrees 11 and 15 (conductors 121 and 50); we
tried the remaining ones (from the 17-isogenous curves of conductor 14450 — the 37-isogenous pair
in conductor 1225 was already in our list), but again the resulting number fields had considerably
larger discriminants than those in (36).
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