
Completely decomposable modular Jacobians

Jennifer Paulhus and Andrew V. Sutherland

Abstract. We use recently developed algorithms and a new database of mod-
ular curves constructed for the L-functions and Modular Forms Database to

enumerate completely decomposable modular Jacobians of level N < 240. In
particular, we find examples in 13 previously unknown genera of Jacobian va-

rieties isogenous to a product of elliptic curves over Q. The new genera are:

38, 68, 75, 76, 77, 78, 113, 135, 137, 157, 159, 169, and 409.

As abelian varieties, Jacobian varieties can be decomposed (up to isogeny) into
a product of simple abelian varieties. Many interesting questions can be asked
about these decompositions. In particular, Ekedahl and Serre [ES93] studied the
question of when a Jacobian variety factors into a product of elliptic curves (abelian
varieties of dimension one), called a completely decomposable Jacobian. They asked
if the genera for which there is such a curve are bounded, and if not, whether there is
an example in every genus of a curve whose Jacobian is completely decomposable.
Toward the latter question, they produced curves of many genera (up to genus
1297) with completely decomposable Jacobians defined over number fields. Both
questions remain open over fields of characteristic zero (in positive characteristic
one can realize infinitely many genera; see [Yui80, Gon99, DS07]).

But there were still many genera below 1297 for which Ekedahl and Serre were
unable to produce an example. In the intervening years some gaps have been
filled in. Work of Yamauchi [Yam07] on decompositions of Jacobian varieties of
modular curves found some new examples. The first author in collaboration with
Rojas [PR17] used classifications of the automorphism groups of curves as well
as a new technique involving intermediate quotients of curves with automorphisms
to produce many more examples. Rojas and Rodŕıguez recently demonstrated an
example in genus 101 [RR24]. See [Ser20, §3.11] for a brief summary of this
problem and prior results.

In this short note we present results obtained from a new database of modular
curves constructed for the L-functions and Modular Forms Database (LMFDB)
[LMF25] to obtain completely decomposable Jacobians in 13 new genera, all of
which are defined over Q. In particular, we find an example in genus 38, which
increases the least genus for which no completely decomposable Jacobian over a
number field (or even over C) is known to 56. The complete list of genera known to
occur in characteristic zero now stands as follows (with the 13 new genera in bold):
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0–37, 38, 39–55, 57–58, 61–65, 67, 68, 69, 71–73, 75–78, 79–82, 85, 89, 91,
93, 95, 97, 101, 103, 105–107, 109, 113, 118, 121, 125, 129, 135, 137, 142,
145, 154, 157, 159, 161, 163, 169, 193, 199, 205, 211, 213, 217, 244, 257,

325, 409, 433, 649, 1297.

Many of the examples produced by Ekedahl and Serre in [ES93] are Jacobians
J0(N) of classical modular curves X0(N) whose non-cuspidal points parameterize
elliptic curves with a cyclic isogeny of degree N . They noted that X0(N) is com-
pletely decomposable whenever the eigenvalues of the Hecke operators Tp acting on
weight-2 cusp forms of level N are rational for all p ∤ N , and used an early pre-
cursor to the LMFDB (unpublished tables of modular forms computed by Cohen,
Skoruppa, and Zagier in the early 1990s), to determine the N ≤ 1000 satisfying
these conditions. Yamauchi later determined the entire list of N for which J0(N) is
completely decomposable [Yam07, Thm 1.1], modulo errors at N = 28 (inadver-
tently omitted) and N = 672 (incorrectly included), as noted in [EHR14, p. 82].
The genera that arise are:

0–11, 13, 17, 19, 21, 25, 29, 33, 37, 43, 49, 53, 55, 57, 61, 73, 97, 121, 161, and 205.

Recently, a database of modular curves was added to the beta version of
the LMFDB (https://beta.lmfdb.org/ModularCurve/Q/) [LMF25] as part of a
project supported by the Simons Collaboration in Arithmetic Geometry, Number
Theory, and Computation. This database includes all modular curves XH asso-

ciated with open H ≤ GL2(Ẑ) of level N ≤ 70 with det(H) = Ẑ×. The level
of H is the least integer N for which H is the inverse image of its projection to
GL2(Z/NZ), and the constraint on det(H) ensures that XH/Q is a nice (smooth,
projective, geometrically integral) curve. The XH are generalizations of the classi-
cal modular curves X0(N) and X1(N), and they parameterize elliptic curves with
H-level structure; we refer the reader to [RSZB22, §2] for further details.

This database includes the decomposition of JH := Jac(XH) into simple mod-
ular abelian varieties Af associated to Galois orbits of weight-2 newforms f . As
proved in [RSZB22], all such f are (not necessarily new) normalized eigenforms
in S2(Γ1(N)∩ Γ0(N

2)). These decompositions were computed using the algorithm
described in [RSZB22, §6], which we briefly recall. If [f1], . . . , [fm] is a complete
list of Galois orbits of eigenforms in S2(Γ1(N) ∩ Γ0(N

2)), then there is a unique
sequence of nonnegative integers e1, . . . , em for which

(1) L(JH , s) =

m∏
i=1

L(Afi , s)
ei ,

which implies the integer linear constraint ap(JH) =
∑

i=1 eiap(Tr(fi)) for each
prime p. Here Tr(fi) denotes the traceform of fi, the sum of the Galois conjugates
of f , see [BBB+21, §4.5]). We also have the constraint

∑m
i=1 eia1(Tr(fi)) = g(XH).

The integer q-expansions
∑

n=1 anq
n of the traceforms Tr(f) were computed

using the algorithms described in [BBB+21] for n ≤ B. By increasing the bound B
as required, one eventually obtains a linear system determined by the constraints
on ap(JH) and g(XH) that has a unique solution in Q (which is necessarily inte-
gral). This reduces the problem of computing the isogeny decomposition of JH to
linear algebra, provided one can efficiently compute the integers ap(JH) and the
q-expansions of all the relevant traceforms Tr(fi). An efficient algorithm for com-
puting ap(JH) is described in [RSZB22, §5], and a Magma implementation of this
algorithm is available in the associated GitHub repository. The computations of
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the traceforms is more difficult (this requires decomposing spaces of modular forms
of level N2, including spaces with nontrivial character), but for H of level N ≤ 70
most of the required traceforms were already present in the LMFDB thanks to
[BBB+21] (this work involved hundreds of CPU years of computations that we
fortunately did not need to repeat). This made it a simple matter to search the
database for examples where JH is completely decomposable, leading to the dis-
covery of 11 previously unknown genera.

The database also includes many XH with H of level N > 70, but for N > 70
it does not include decompositions of the Jacobians JH due to the difficulty of
computing the modular forms in S2(Γ1(N) ∩ Γ0(N

2)). Indeed, N = 71 is already
problematic in this regard, as the space of newforms with LMFDB label 5041.2.g
of dimension 9120 has resisted all efforts to decompose it to date. However, the
modular abelian varieties Af corresponding to Galois orbits of newforms f in this
space all have dimension divisible by 24 (the degree of the field of values Q(ζ35)
of the Dirichlet character orbit 5041.g), which implies that they cannot appear as
isogeny factors of a completely decomposable JH . Only weight-2 newforms with
rational coefficients, corresponding to elliptic curves E/Q, are relevant to our search,
and these E are easy to determine. Indeed, the LMFDB contains all elliptic curves
E/Q of conductor less than 500,000, which is enough to handle any N ≤ 707.

It is not computationally feasible to enumerate all open H ≤ GL2(Ẑ) of level

N ≤ 707; at level 80 there are already nearly 20 million H with det(H) = Ẑ×. But
it is not necessary to enumerate all such H. If JH is not completely decomposable,

then neither is JK for any K ≤ H ≤ GL2(Ẑ), since the inclusion K ≤ H induces
a morphism of curves XK → XH that makes JH an isogeny factor of JK . This
suggests the following strategy: for a given level N , enumerate the subgroup lattice
of GL2(Z/NZ) up to conjugacy from the top down by successively computing (con-
jugacy classes of) maximal subgroups (a task that Magma [BCFSe25] performs
very efficiently), and do not proceed beyond any H for which JH is not completely

decomposable. An open subgroup H ≤ GL2(Ẑ) = lim←−N
GL2(Z/NZ) of level N is

uniquely determined by its projection to GL2(Z/NZ), and we may identify H with
the conjugacy class of its image in GL2(Z/NZ), since conjugate subgroups give rise
to isomorphic modular curves. Not every subgroup K ≤ GL2(Z/NZ) has level N ,
it may have level M properly dividing N , but such K are still of interest because
they may contain subgroups H of level N ; as noted above, if JK is not completely
decomposable then neither is JH .

As we enumerate the subgroup lattice of GL2(Z/NZ) we may restrict our at-
tention to H for which det(H) = (Z/NZ)×, as we are interested in nice curves
over Q (if det(H) ̸= (Z/NZ)× then XH will not be geometrically irreducible), and
we can also require H to contain −I, since if H does not contain −I and we put
H ′ = ⟨H,−I⟩, the curves XH and X ′

H will be isomorphic (even though they have
different moduli interpretations); see [RSZB22, §2] for further details. Note that
if H does not satisfy both these constraints than neither does any of its subgroups.

When JH is not completely decomposable we can prove this using the L-series
of the elliptic curves E/Q of conductor dividing N2. Explicitly, let E1, . . . , Em

be the list of all such elliptic curves; this is a finite list, and for N ≤ 707 it can
be easily extracted from the LMFDB. If JH is completely decomposable there are
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nonnegative integers e1, . . . , em for which

(2) L(JH , s) =

m∏
i=1

L(E, s)ei .

We may now assemble a list of m primes p1, . . . , pm for which the m ×m integer
matrix A := [api

(Ej)]ij has nonzero determinant. Such a list necessarily exists (the
newforms corresponding to the Ej are linearly independent), and in practice it does
not take long to find. We now invert the matrix A (over Q), which we note depends
only on the level N , and can be computed before enumerating any subgroups. As

we enumerate subgroups H ≤ GL2(Z/NZ) of level N with det(H) = Ẑ× containing
−I, for each H we compute the integer vector v := (ap1(JH), . . . apm(JH)) using
the algorithm in [RSZB22, §5] and then consider A−1v. If this vector does not lie
in Zm

≥0 then JH cannot be completely decomposable, since its L-function cannot

satisfy (2). For N < 240 the number of E/Q we need to consider is less than 1000,
and the primes p ≤ 8192 are sufficient to obtain a matrix [api(Ej)] of full rank from
which we can extract a matrix with nonzero determinant by picking a subset of
linearly independent rows.

If A−1v is a vector of nonnegative integers, this does not necessarily imply
that JH is completely decomposable (although in practice this is almost always
true). If JH is not completely decomposable there certainly exists a list of primes
p1, . . . , pm we could use to prove this, but it might not be the list we chose, and
we don’t want to take the time to check all possibilities up to the Sturm bound
for S2(Γ1(N) ∩ Γ0(N

2)). But while searching for unrealized genera we are happy
to defer a rigorous verification to a later stage, since most of the XH we encounter
will have genera that have already been realized (and when we find one that has
not been realized, there will often be many, and we only need one example).

We implemented this strategy in Magma, using code from [RSZB22]; see the
file gl2split.m in the GitHub repository linked to below. We ran this algorithm
on every level N < 240 (we included N ≤ 70 as a sanity check). These computa-
tions were performed on a 256-core AMD EPYC 9754 2.25GHz CPU with 1.5TB
RAM running Ubuntu 24.04 and took only a few days (less than a CPU-year of
computation). This yielded a list of more than half a million modular Jacobians
JH that appear to be completely decomposable. For each genus g realized by one of
these examples we determined the minimal H with g(XH) = g, with the H ordered
according to their LMFDB label N.i.g.c.n, whose first three parts encode the level
N , index i, and genus g of H. These minimal examples are listed in Table 1, and
the full dataset is available at

https://github.com/AndrewVSutherland/CompletelyDecomposableModularJacobians/.

All but five of the minimal examples we found have level N ≤ 70, meaning
the decomposition of JH is already available in the LMFDB and no further ver-
ification was required. The exceptions all have level 120, and after computing
all the newforms in S2(Γ1(120) ∩ Γ0(120

2)), we were able to use the algorithm
in [RSZB22, §6] to rigorously determine the decomposition of Jac(XH). While
dim(S2(Γ1(120) ∩ Γ0(120

2)) = 12032 is rather large, it is the direct product of
279 newspaces S2(M,χ) with M |N2 of dimension at most 360, so this was a fea-
sible computation (the fact that N = 120 is highly composite helps us here). The
examples at level 120 yielded two previously unknown genera: 113 and 169.
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g LMFDB label g LMFDB label g LMFDB label g LMFDB label

0 1.1.0.a.1 21 20.360.21.a.1 45 60.640.45.a.1 85 20.1440.85.b.1

1 6.6.1.a.1 22 20.360.22.a.1 49 30.720.49.a.1 89 120.1152.89.?.1

2 10.30.2.a.1 23 30.360.23.a.1 50 120.640.50.?.1 97 60.1440.97.y.1

3 7.168.3.a.1 24 24.384.24.a.1 51 60.720.51.u.1 103 60.1440.103.a.1

4 10.90.4.a.1 25 24.384.25.a.1 52 60.720.52.i.1 105 60.1440.105.g.1

5 10.120.5.a.1 26 11.660.26.c.1 53 60.720.53.a.1 109 60.1440.109.a.1

6 10.180.6.b.1 27 20.480.27.a.1 55 36.864.55.a.1 113 120.1440.113.?.1

7 10.180.7.a.1 28 18.486.28.a.1 57 60.864.57.a.1 121 60.1728.121.a.1

8 11.220.8.a.1 29 20.480.29.a.1 61 60.864.61.c.1 129 120.1728.129.?.1

9 15.240.9.c.1 31 28.576.31.b.1 65 60.960.65.m.1 135 60.1920.135.a.1

10 15.180.10.a.1 32 30.540.32.a.1 68 60.960.68.a.1 137 60.1920.137.a.1

11 24.192.11.i.1 33 24.576.33.a.1 69 60.960.69.c.1 157 60.2160.157.a.1

12 11.330.12.a.1 34 30.540.34.a.1 72 60.960.72.a.1 159 60.2160.159.gu.1

13 10.360.13.b.1 35 60.480.35.a.1 73 24.1152.73.a.1 161 48.2304.161.cax.1

14 30.240.14.a.1 36 30.540.36.a.1 75 60.1080.75.gu.1 163 60.2160.163.c.1

15 20.240.15.a.1 37 20.720.37.i.1 76 60.1080.76.dc.1 169 120.2160.169.?.1

16 28.288.16.q.1 38 60.540.38.y.1 77 60.1080.77.ge.1 193 60.2880.193.dw.1

17 20.360.17.e.1 39 60.540.39.e.1 78 60.1080.78.a.1 205 60.2880.205.a.1

18 60.240.18.m.1 40 60.540.40.a.1 79 60.1080.79.bg.1 217 60.2880.217.c.1

19 18.324.19.c.1 41 20.720.41.i.1 81 48.1152.81.id.1 325 60.4320.325.a.1

20 20.360.20.a.1 43 20.720.43.a.1 82 60.1080.82.a.1 409 60.5760.409.c.1

Table 1. Minimal modular curves of level N < 240 with com-
pletely decomposable Jacobians ordered by genus g. New genera
are in bold, previously known modular genera are in italic. Un-
linked labels are not yet in the LMFDB.

Remark 1. We believe that Table 1 includes every genus for which a completely
decomposable modular Jacobian is known. It includes every genus arising for XH

of level N < 240, and every genus arising from X0(N) for some N , the largest of
which is N = 1200 (we realize g(X0(1200)) = 205 as g(XH) with H of level 60).
Table 1 does not include 32 genera for which nonmodular completely decomposable
Jacobians are known, but not all of these 32 are realized over Q. This suggests
two refinements of the question posed by Ekedahl and Serre: (1) in which genera
are there completely decomposable modular Jacobians, and (2) in which genera are
there nice curves X/Q with completely decomposable Jacobians? Question (1) is a

subset of (2), if we restrict to open H ≤ GL2(Ẑ) with det(H) = Ẑ× as we do here.

Remark 2. Ekedahl and Serre also consider quotients of modular curves. This
allows them to realize several genera not known to occur for completely decompos-
able modular Jacobians; the genus 47 quotient X0(600)/⟨w24⟩ is one such example.
We have not attempted to construct quotients of the completely decomposable
modular Jacobians we found, but our search yielded more than 100,000 examples
of genus g > 100 whose quotients might yield new examples. One could also con-
sider modular Jacobians that are nearly but not completely decomposable, as these
may admit quotients whose Jacobians are completely decomposable.
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Remark 3. The modular abelian variety Af associated to the Galois orbit of a
non-CM newform is geometrically simple, so in most cases theQ-isogeny decomposi-
tion of JH implied by (1) is a Q-isogeny decomposition (and in fact a decomposition
over C). But the presence of complex multiplication complicates matters. In our
search we only checked for JH that are completely decomposable over Q and might
have missed examples that are completely decomposable over Q.
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