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Abstract. In this short note, we give a method for computing a non-torsion point of smallest canonical height

on a given elliptic curve E/Q over all number fields of a fixed degree. We then describe data collected using

this method, and investigate related conjectures of Lehmer and Lang using these data.

1. Introduction

Let E be an elliptic curve over a number field K. We denote by K a fixed algebraic closure of K and by ĥ

the canonical height function on E(K). Recall that ĥ(P ) = 0 if and only if P is a torsion point. There is much
interest in studying the canonical heights of non-torsion points. In particular, we have the following conjecture,
which is known as Lehmer’s conjecture because of its analogy with a conjecture of D.H. Lehmer from 1933 [6].
It describes how the smallest possible height of a non-torsion point P ∈ E(K) varies with the (minimal) field
K(P ) over which P is defined.

Conjecture 1.1 (Lehmer). Let

CE := inf
{
ĥ(P ) · [K(P ) : K]

}
,

where the infimum ranges over the non-torsion points P ∈ E(K) − E(K)tors. Then the constant CE satisfies
CE > 0.

The other primary conjecture describes how the smallest possible height of a non-torsion point P ∈ E(K)
defined over an extension of a given degree varies with the curve E. Denote by jE ,∆E the j-invariant and
minimal discriminant of E/K. We write NK/Q : K → Q for the norm map and see Definition 2.1 for the height

function h : P1(K) → R≥0. Consider the quantity ME = max{h(jE), log |NK/Q∆E |, 1}.

Conjecture 1.2 (Lang). Let

CK,d := inf

{
ĥ(P )

ME′

}
,

where the infimum ranges over all elliptic curves E′/K and the non-torsion points P ∈ E′(K)− E′(K)tors for
which K(P ) is contained in a degree d extension of K. Then the constant CK,d satisfies CK,d > 0.

Although there is theoretical progress on these conjectures and their generalisations to abelian varieties
over number fields, very little experimental work has been done investigating the values of CE and CK,d. In
this short paper, we describe a database of quadratic points of small height on 17,834 elliptic curves over the
rationals K = Q. In 728 of the cases, the point in the database is provably the point of smallest height on the
given elliptic curve over any quadratic field. The computations to collect our data required just over 800 hours
of CPU time. We use these data to investigate the constants in Conjectures 1.1 and 1.2.

We proceed first with a brief background on heights, followed by a description of the theoretical results
underlying the algorithm used to build our database. We then discuss some preliminary observations about the
resulting data, and possible future work.

2. Background on heights

Let K be a number field with fixed algebraic closure K, and let E be an elliptic curve over K, given by an
affine Weierstrass equation with coefficients in K.

Definition 2.1. Let x : E(K) → P1(K) denote the map taking the x-coordinate and h : P1(K) → R≥0 the

(absolute logarithmic) Weil height on P1(K), as defined in [5], Section B.2. By a standard abuse of notation,
1
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2 EXPERIMENTAL INVESTIGATIONS ON LEHMER’S CONJECTURE FOR ELLIPTIC CURVES

we also denote by h : E(K) → R≥0 the map defined by P 7→ h(x(P )).
We denote the canonical height on E/K by

ĥ : E(K) → R≥0, P 7→ lim
n→∞

1

4n
h(2nP ).

Recall that the canonical height is the unique quadratic form E(K) → R≥0 with the property that the

function P 7→ |h(P )− ĥ(P )| is bounded.

3. Computing minimal heights over field extensions

Let E be an elliptic curve over a number field K and let F be a set of finite field extensions of K with the
following properties:

• If F ∈ F and F ′ ⊂ F , then F ′ ∈ F .
• The set of degrees {[F : K] : F ∈ F} is finite.

Consider the infimum

CE,F := inf
F∈F ,P∈E(F )−E(F )tors

{
ĥ(P ) · [F : K]

}
.

Remark 3.1. The first property ensures that whenever F ∈ F and P ∈ E(F ), the set F also contains
the minimal field of definition K(P ) of P . The second property ensures that the subset of number fields in F
of discriminant bounded by a given value is finite. In turn, using (for example) Lemma 3.2 below, this implies
that a Northcott property holds for all fields in F : There are finitely many points of bounded height on E
over fields in F . Thus the minimum height of such points exists and it follows that CE,F > 0. The fact that
CE,F > 0 also follows directly from Theorem 3.3 and it is predicted by Conjecture 1.1 since CE,F ≥ CE .

In this section we explain how to explicitly compute CE,F using a lower bound on the Weil height h(P ) of

the x-coordinate, and an upper bound on the difference
∣∣∣h(P )− ĥ(P )

∣∣∣ with the canonical height.

We proceed in two steps: First we determine a finite set F ′ ⊂ F such that CE,F ′ = CE,F . Then we
explain how to solve the finite problem of determining CE,F ′ . Computational challenges arise when F ′ is large;
we discuss these in the next section, where we consider the case K = Q and F = {F/Q : [F : Q] ≤ 2}.

As noted under Definition 2.1, we can fix BE ∈ R>0 such that

(1)
∣∣∣h(P )− ĥ(P )

∣∣∣ ≤ BE

for all P ∈ ∪F∈FE(F ), see for example [9] for an explicit value of BE . For now, any BE satisfying (1) will do,
but for our explicit computations it is useful to have BE as small as possible. We will use a modified version of
the bound given in [3], which we describe in Section 3.1.

Lemma 3.2. Let D ∈ R≥0, F ∈ F , and d = [F : K]. Let δK be the number of Archimedean places of K.
Define ∆(D,E, F ) ∈ R>0 by

∆(D,E, F ) := exp (dδK log d+ d(2d− 2)BE + (2d− 2)D) .

If the discriminant ∆F of F satisfies |∆F | ≥ ∆(D,E, F ), then ĥ(P ) ≥ D
d for all P ∈ E(F )−E(F )tors satisfying

K(P ) = F . Further, if [F : K] = [F ′ : K], then ∆(D,E, F ) = ∆(D,E, F ′).

Proof. By Theorem 2 in [8] we have h(P ) ≥ 1
2d−2

(
1
d log |∆F | − δK log d

)
. The first part of the lemma

follows by combining |∆F | ≥ ∆(D,E, F ) and Equation (1). The second part of the lemma is clear from the
definition of ∆(D,E, F ). □

We can now reduce F to a finite set.

Theorem 3.3. Let D′ ∈ R≥0 be such that CE,F ≤ D′ and

F ′ = {F ∈ F : |∆F | ≤ ∆(D′, E, F )} .
Then, F ′ is finite and CE,F ′ = CE,F .

Proof. By our initial assumptions on F , the set {[F : K] : F ∈ F} is finite. Therefore, we can define
∆ = max{∆(D′, E, F ) : F ∈ F}. The set F∆ = {F ∈ F : |∆F | ≤ ∆} is finite by the Hermite–Minkowski
Theorem, and hence its subset F ′ ⊂ F∆ is also finite. Lemma 3.2 implies that CE,F ′ = CE,F . □

In principle, we can therefore compute CE,F as follows: Do an initial search to find F ′ ∈ F , P ′ ∈ E(F ′)

with K(P ′) = F ′ such that D′ = ĥ(P ′)[F ′ : K] is small. Then CE,F ≤ D′ and we write F ′ ⊂ F for the
associated finite set of fields from Theorem 3.3. In theory any F ′, P ′ work, but in practice it is worth spending
more time in the initial search, as a smaller D′ decreases the number of fields in F ′ to be considered later. For
each F ∈ F ′ do a finite search to find the points P ∈ E(F ) such that

(2) h(P ) ≤ D′

[F : K]
+BE .
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EXPERIMENTAL INVESTIGATIONS ON LEHMER’S CONJECTURE FOR ELLIPTIC CURVES 3

If F ′ is not too large1 and we can list it explicitly, we obtain in this way the finite list of F, P satisfying (2),

among which is a number field FE ∈ F and a PE ∈ E(FE)− E(FE)tors such that CE,F = ĥ(PE) · [FE : K].

3.1. A modified CPS height bound. Cremona, Prickett and Siksek describe a bound for h(P )− ĥ(P )
where the point P lies in a fixed number field K in [3]. We refer to this as the CPS height bound. While this
bound is sharper than the one proved by Silverman in [9], it depends on the number field K. We modify this
result to compute an upper bound for all points P in quadratic extensions of Q. Let Kν be the completion of
K at ν and let ∆min

ν be the discriminant of the minimal model of E over Kν . Then we have the following:

Lemma 3.4. Let E/Q be an elliptic curve. Let K be a quadratic extension. Let M1 := max{2 log(ϵνC), 2 log(ϵνR)},
and Mp := maxν|p{ 2

[Kν :Qν ]
(αν + 1

6ordν(∆E/∆
min
ν )) log(qν)}. Then for all points P ∈ E(K), we have:

h(P )− ĥ(P ) ≤ M1

6
+

1

2

∑
p|∆E

Mp.

The definitions of αν , ϵν and qν can be found in [3]. Moreover, there are only finitely many values of M1 and
Mp as K ranges over all quadratic extensions.

Proof. To keep the presentation succinct, we assume the reader is familiar with the bound in Theorem 1
of [3], and explain only how to modify this bound to apply over all quadratic fields simultaneously. The bound
from Theorem 1 in [3] is given as a sum over archimedean and a sum over non-archimedean places. For the sum
over archimedean places, we only need to take into account the complex valuation or twice the real valuation,
depending on whether K is real or imaginary. This yields M1. For the sum over non-archimedean values, we
first note that for any valuation above a prime p ∤ ∆E , the term in the sum is zero. Thus it suffices to look at
valuations above primes p dividing the discriminant of the elliptic curve.

Let ν be a valuation above an odd prime p. Then Kν is either Qν or one of its three quadratic extensions.
Hence the contribution of any such place is bounded by the maximum of (αν + 1

6ordν(∆E/∆
min
ν )) log(qν) over

all four possibilities. If Kv
∼= Qp, then p splits, so we will have two valuations above p, which means that

we need to multiply the corresponding term with 2. For the prime 2, the idea is the same, except that Kν is
isomorphic to either Q2 or one of its seven quadratic extensions. □

We note that Peter Bruin has given [2] a method to compute the supremum of h(P )− ĥ(P ) for an elliptic
curve in Weierstrass form over all points in Q. We use the bound in Lemma 3.4 instead of this result both
because of the possibility that Lemma 3.4 gives a smaller bound, since we consider only quadratic extensions,
and because of its ease of implementation.

4. Computational Results

We implemented the ideas in Section 3 in the case of quadratic fields using Magma version 21.2-2[1]. In
particular, for every elliptic curve in the Cremona database [7] of conductor at most 3,000, we conducted an
initial search to find points of small height. We then computed a bound ∆ = ∆(D′, E, F ) as in Lemma 3.2,
using the height bound in Lemma 3.4 as our BE . For curves where the resulting bound ∆ was less than 105,
we searched for points of height at most 5 over all quadratic fields with |∆K | ≤ ∆. The choice of searching for
points of height at most 5 is arbitrary, but we almost always found such points, see Section 4.1. In this case,
the point of smallest canonical height found over these quadratic fields is provably the point of smallest height
on E over any quadratic field. In order to keep the computations feasible, for curves where the resulting bound
was greater than 105, we searched only over quadratic fields with |∆K | ≤ 1, 000. Here again, the choice of the
upper-bound is arbitrary. We think the chosen bound is reasonable as in the provable cases the point of smallest
height was usually found lying in a field with discriminant in this range, see Section 4.1. The resulting dataset
is available, along with the code used to produce it at https://github.com/EliOrvis/LehmersConjectureForECs.
The dataset contains the following fields:

• the Cremona label for the curve;
• the discriminant of the quadratic field over which the point of smallest height over all quadratic fields
is defined;

• the coordinates of the point of smallest height over all quadratic fields;
• the height of this point;
• a flag indicating whether the point is provably the smallest over all quadratic fields.

Remark 4.1. In view of the abundance of data in the LMFDB on generators of the Mordell-Weil group
of the elliptic curves E in our database and of their quadratic twists, it is not necessary to conduct an initial
point search to compute the first bound ∆ as these can be found in the LMFDB. Similarly, one could use the
LMFDB precomputed rational points defined on E itself or one of its quadratic twists to perform the search for

1What this means exactly depends on the efficiency of the used algorithms and the available memory and computing power.

See also Section 4.
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4 EXPERIMENTAL INVESTIGATIONS ON LEHMER’S CONJECTURE FOR ELLIPTIC CURVES

points over quadratic fields. Implementing these changes could improve our algorithm. We thank an anonymous
referee for this suggestion.

In this section we summarize the resulting data, and make some observations about its implications for
Conjectures 1.1 and 1.2.

4.1. Description of data. We ran our code on 17,834 elliptic curves, which required just over 800 hours
of CPU time running on a server operating Red Hat Enterprise Linux 8.10. Of these, we provably found the
point of smallest height over all quadratic fields for 728 curves. For 542 curves, there were no non-torsion
points of height smaller than five for any quadratic field we searched, and so there is no point for these curves
in our dataset. Among the remaining curves, the first curves in our list (ordered by conductor) for which the
discriminant bound obtained by the initial search was too big were the curves with Cremona label 11a1 and
11a2, of conductor 11.

Among all curves in our dataset, the smallest height we found was the point

(3) (27,−119, 1) on the elliptic curve y2 + xy + y = x3 + x2 − 2990x+ 71147,

which has Cremona label 1470l1, and height 0.0099641079999 . . ..
We note that the point in (3) has height less than 1/100, making it competitive with the points of small

height on curves over Q found in Elkies table [4]. At the same time, Taylor found points of much smaller height
on elliptic curves defined over quadratic fields [10] in unpublished work. Our methods, however, differ from
both of these previous computations, in that we search broadly over elliptic curves by conductor, whereas these
prior computations were targeted searches in families of elliptic curves likely to contain points of small height.

We also make some observations about the quadratic fields over which points of smallest height are defined.
In our dataset, the point of smallest height that we found was defined over Q for 2,199 of the elliptic curves.
The next most common fields were the two cyclotomic quadratic fields: Q(

√
−3) with 1,610 elliptic curves and

Q(
√
−4) with 1,191 elliptic curves. These fields remained unchanged when restricting to curves where our point

is provably the smallest over any quadratic field: in this case, the most common field was Q(
√
−3) with 137

curves, followed by Q with 117, and Q(
√
−4) with 100. Finally, we note that among curves where we have

provably found the point of smallest height over all quadratic fields, this point is always defined over a field K
with |∆K | ≤ 1, 000. Thus, we suspect that for many of the curves where our discriminant bound was larger
than 105, the point in our dataset is in fact the smallest over all quadratic fields.

4.2. Remarks on Conjectures 1.1 and 1.2. We performed some preliminary investigations into Con-
jectures 1.1 and 1.2 using the data we collected. Over all elliptic curves in our dataset, the curve and point
described in (3) represents the smallest lower bound obtained for Conjecture 1.1. To investigate Conjecture 1.2,
we computed the quantity L(E) := HE

max{1,h(jE),log(∆2
E)}

for all elliptic curves in our database, where HE is the

minimum height of a point found in a quadratic field. Figures 1 and 2 display 1/L(E) on the y-axis, and the
conductor, and log of the discriminant, respectively on the x-axis.

Figure 1. Conductor vs. con-
stant in 1.2

Figure 2. Log Discriminant vs.
constant in 1.2

Because we are graphing 1/L(E), points that appear high on the y-axis correspond to particularly low
values of L(E). Although neither shows a clear correlation, there appears to be a tendency in our dataset for
particularly low values of L(E) to occur on curves with discriminant between roughly e20 and e35. It is possible
that this reflects a bias in the set of curves that we considered, however, since this range of discriminants
contains a disproportionate number of the curves in our dataset.
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5. Future work

There are several avenues available for extending this work. The first is to improve the completeness of
our current dataset. One profitable extension would be to improve the efficiency of our search so that we can
prove we have found the point of smallest height in more cases. This search is amenable to parallel processing
since the computations over each quadratic extension are independent. In the future, we plan to implement this
parallel algorithm to improve the completeness of our dataset.

The next avenue for exploration is to apply the same computational approach to fields of larger degree. We
recall that the result of Lemma 3.2 holds for extensions of Q of any degree, and Lemma 3.4 can be suitably
modified, or replaced with the bound of Bruin [2]. Working with extensions of degree larger than 2 introduces
the challenge of enumerating all extensions of Q of bounded discriminant, however. At least in the case of cubic
fields, this could be overcome by leveraging the database already compiled in the LMFDB. Finally, we note that
the two quadratic fields most likely to contain points of small height were the two cyclotomic quadratic fields.
We plan to investigate this phenomenon further by searching for points of small height over cyclotomic fields
of larger degree.

Lastly, theoretical improvements on Theorem 2 of [8] or Lemma 3.4 would significantly reduce the number
of searchable quadratic fields, which would improve our algorithm, and hence enlarge the database.
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