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Abstract. We announce a database of rigorously computed Maass forms on
congruence subgroups Γ0(N) and briefly describe the methods of computation.

1. Computation of Maass Forms

Let Γ0(N) be a congruence subgroup in SL(2,Z). Each matrix γ =
(
a b
c d

)
∈

SL(2,R) acts on the upper halfplane H in the standard way, given by γz = az+b
cz+d .

The quotient space Γ0(N)\H is a noncompact Riemann surface. In the hyperbolic
metric on H, the weight k Laplace-Beltrami operator, ∆k, takes the form

∆k = y2
( ∂2

∂x2
+

∂2

∂y2

)
− iky

∂

∂x
.

Let χ denote a Dirichlet character of modulus N . Then Maass cuspforms of weight
k and character χ on Γ0(N) are eigenfunctions f of ∆k that satisfy

• ∆kf + λf = 0,
• f(γz) = χ(γ)(cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ0(N), and

• f ∈ L2(Γ0(N)\H).

Maass cuspforms form the discrete component of the spectral resolution of ∆k

and therefore form building blocks for all L2(Γ0(N)\H). The problem of giving
numerical examples of Maass cuspforms has been widely considered since the 1970s.
Despite this, it is difficult to give any nontrivial example of a Maass cuspform.

Each Maass form of weight k and character χ on Γ0(N) has a Fourier expansion
of the form

(1) f(z) =
∑
n̸=0

a(n)
√
yKir(2π|n|y)e2πinx

where z = x + iy, Kν(y) is the modified Bessel function of the second kind, and
the eigenvalue λ of f is given by λ = 1

4 + r2 for r ∈ R. This r is called the
spectral parameter of f . To describe a Maass form, it’s necessary to describe the
eigenvalue λ (or equivalently the spectral parameter r) and the coefficients a(n).
In practice, most data associated to a generic Maass form is conjectured to be
transcendental and algebraically independent of standard constants; hence one gives
approximations to the eigenvalue and coefficients to specify a Maass form.
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In [The05], H. Then gives an extensive list of references to earlier computa-
tions of Maass forms. Until 2006, methods to generate numerical examples were
fundamentally heuristic, meaning that there is no guarantee that a claimed approx-
imation is actually close to a true Maass form.

Booker, Strömbergsson and Venkatesh [BSV06] gave the first method of com-
puting rigorous Maass forms on SL(2,Z). Stated more precisely, they gave a method
that gives explicit intervals containing the eigenvalue and coefficients, and hence
bounds for how close a putative Maass form is to a true Maass form. There are
now three algorithms to generate rigorous Maass cuspforms:

(1) Quasimode construction, a generalization of [BSV06] to general level and
character by Child [Chi22].

(2) A rigorous implementation of the Selberg trace formula due to Seymour-
Howell [SH22],

(3) A rigorous version ofHejhal’s algorithm due to Seymour-Howell and Lowry-
Duda, to be described in forthcoming work [LDSH].

It is notable that Booker (and to a lesser extent, Strömbergsson) helped develop
each of these algorithms.

In this note, we describe how an initial database of 35416 rigorous Maass cusp-
forms (all of weight 0, on congruence subgroups Γ0(N) with N squarefree) was
computed using these algorithms and inserted into the LMFDB [LMF19]. We
briefly describe the three algorithms and how they interact in §2. In §3, we detail
the data now available. And in §4, we give additional comments on the current and
future status of this database.

2. Algorithms for Rigorously Computing Maass Forms

We say that a Maass cuspform fj is computed rigorously if there is an explicit
interval Ij,λ for the eigenvalue and explicit intervals Ij,n for the coefficients such
that there is exactly one true Maass form

fj(z) =
∑
n̸=0

aj(n)
√
yKirj (2π|n|y)e2πinx

with λj = 1
4 + r2j ∈ Ij,λ and aj(n) ∈ Ij,n for all n. In this note, we impose the

additional restriction that there can be no missing eigenvalues, or rather that every
eigenvalue up to λj must also have been produced.

We now briefly describe each of the three methods of computation.

Remark 1. A folklore conjecture states that the vector space of Maass forms
on SL(2,Z) with a given eigenvalue is one-dimensional. This would imply that a
sufficiently tight interval Ij,λ would be sufficient to uniquely specify a Maass form on
SL(2,Z). This is true for all of the Maass forms in the initial database. In general,
however, there are spaces with nontrivial character in which multiple Maass forms
have the same eigenvalue. In this case, both Ij,λ and a finite number of Ij,n are
necessary to uniquely identify the form fj .

2.1. Rigorous Trace Formula. With extreme simplification, the Selberg
trace formula in [SH22, Theorem 3.1] describes sums over coefficients weighted
by “nice” analytic test functions F , taking the form∑

j>0

F (rj)aj(n) = (complicated but explicit).
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This sum is over all Maass forms fj on Γ0(N). The omitted right hand side is in
terms of data associated to conjugacy classes of the group Γ0(N) and the Fourier

transform F̂ .
One significant difficulty in this approach comes from the hyperbolic contribu-

tion. These terms include special values L(1, (d/·)) for d of the form (t2 − 4n) for
t ∈ Z, and hence involve computing class numbers and regulators of quadratic fields

by the class number formula. Choosing test functions F with the property that F̂
has compact support allows one to compute data for only finitely many quadratic
fields. By carefully combining different choices of these test functions, it’s possible
to isolate intervals for individual eigenvalues and coefficients.

Remark 2. This relationship between class numbers and Maass forms can
also be used in reverse. With ample Maass form data, one can compute more class
numbers. See [BBD+24] for more in this direction.

The most important benefit of this algorithm is that it can guarantee that all
Maass forms have been found in an eigenvalue range. In practice, one can try to
use the trace formula to give initial approximations to Maass forms and use other
methods to refine these approximations.

2.2. Quasimode construction. In [Chi22], Child extends the quasimode

construction technique in [BSV06] to general level. If f̃j is a putative Maass form

and (∆− λ)f̃j has small L2 norm, then a spectral resolution shows that f̃j is close
to a true eigenfunction. Child (and BSV) show that it is sufficient to obtain strong
bounds along the boundary of the fundamental domain. This method can be used
to certify heuristic approximations to Maass forms.

Quasimode construction requires extremely precise approximations (i.e. hun-
dreds or thousands of digits of precision). This works particularly well in level one,
where heuristic approximations are the easiest to generate. The techniques readily
generalize, but unfortunately quasimode construction cannot guarantee that every
eigenvalue in an interval has been found.

2.3. Rigorous Hejhal. Hejhal’s algorithm [Hej99] is one of the better-known
algorithms for producing heuristic approximations to Maass forms. Strömberg de-
scribed how to adapt Hejhal’s heuristic algorithm for general level multiplier sys-
tems in [Str05].

The fundamental idea is to use automorphy to construct linear systems of
equations for the coefficients. Rapid decay from the Bessel functions in (1) shows

that the truncation f̃j to the firstM coefficients is close to fj . Taking an appropriate

linear combination of f̃j at points zj = xj + iY along a fixed horocycle, one obtains
equations of the form

aj(n)
√
Y Kirj (2π|n|Y ) =

1

2Q

Q∑
j=1−Q

f̃(zj)e(−nxj) + (truncation error).

If the horocycle points are chosen so that each zj is outside the fundamental domain,
then we compute the pullbacks z∗j to the fundamental domain and insert those
instead. This introduces nonlinear mixing into the system, heuristically improving
the condition number of the system of equations. Solving this system would give
an approximation to a Maass form.
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The challenge is that the spectral parameter rj is also unknown. Instead, one
guesses values of rj and obtains heuristic coefficients for a form that would have
eigenvalue 1

4 + r2j . Based on the behavior of these heuristic guesses, one can try to
adjust the values rj to try to find eigenvalues yielding coefficients with behaviors
that behave more like actual coefficients.

The rigorous implementation of Hejhal’s algorithm makes the truncation and
other errors explicit and tracks how an initial approximation (e.g. coming from
the trace formula), guaranteed to some initial precision, behaves under iteration
of Hejhal’s algorithm. When the initial approximation is sufficiently accurate, rig-
orously applying Hejhal’s algorithm refines and produces provably better approxi-
mations. Unfortunately, this requires strong, rigorous initial approximations; and
if the initial approximations are not sufficiently strong, this algorithm may fail to
improve the precision.

3. Data Computed

We rigorously computed 35416 Maass cuspforms on Γ0(N) across squarefree
N from 1 to 105. For each Maass form, we compute the eigenvalue, the first 1000
coefficients, and a portrait (constructed using similar methods as [LD22]). As an
example, we consider the Maass form with the smallest eigenvalue on Γ0(15) This
has the following data

Level 15
Weight 0

Character 15.1
Symmetry odd

Fricke Sign −1
Spectral Parameter 1.51842933602416588036746726626± 6 · 10−12

Spectral Index 1

In addition, the first 1000 coefficients are stored as pairs of (center, error) pairs.
The level, weight, character, and spectral parameter are defined as in §1. Here,

the character is specified by its Conrey label. The Spectral Index gives the index
of the eigenvalue among the sorted list of all eigenvalues of Maass forms of that
level, weight, and character, starting at 1.

Each Maass form is also an eigenfunction under the reflection operator J(z) =
−z and either has “even” symmetry (when fj(−z) = fj(z)) or “odd” symmetry
(when fj(−z) = −fj(z)). Further, each Maass form is an eigenfunction under
the Fricke involution. The Symmetry and Fricke Sign pieces of data give the
eigenvalues under these operators, respectively.

Remark 3. When available, we give additional heuristic digits of precision
for spectral parameters. For example, the spectral parameter in this example is
specified to more than 12 digits. We expect several of these digits to be accurate,
but cannot yet guarantee this.

Remark 4. In principle the symmetry type and Fricke sign can be computed
from the rest of the Maass form data. But for 15423 of the 35416 Maass forms, the
coefficients aren’t computed with enough precision to identify the Fricke sign.

These pieces of data form the label, uniquely identifying Maass forms with a
fixed eigenvalue. The full label takes the form

Label = Level.Weight.ConreyIndex.SpecIndex.Disambig.
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The final term in the label is designed to disambiguate between the finitely many
forms of the same level, weight, character, and eigenvalue: it gives the lexicograph-
ical index of the sequence {(Re(aj(n)), Im(aj(n)))}n≥1 among those Maass forms.
The form above has the label 15.0.1.1.1.

In the initial database, the weight is 0, the character is trivial, and the disam-
biguation index is always 1. Thus forms can also be specified by Level.SpecIndex,
and the form above has short label 15.1. Both links work in the LMFDB.

In total, the database consists of approximately 4.954 GB of Maass form data.
Level 1 is distinguished, because both trace formula methods and verification

methods work much better there. There are 2202 Maass forms of level 1 in the
database, each verified using the quasimode construction above. For each level
2 ≤ n ≤ 105, we computed as many Maass forms as we could while guaranteeing
that no eigenvalues were omitted.

4. Comments on Database Construction

Finally, we conclude with several small comments.

(1) For 15423 forms, the precision from the trace formula isn’t high enough for
the current rigorous implementation of Hejhal’s algorithm to refine. For
these forms, the database includes reasonable estimates on the eigenvalue
but very poor estimates for the coefficients. Different methods to handle
these problems are in development. The plots for the forms with low-
quality coefficients are thus informal.

(2) By restricting to squarefree level, we omit Maass forms coming from in-
duced representations of Hecke characters. These are Maass cuspforms
that are explicitly computable (see e.g. [Maa49]). Algorithms to compute
these efficiently have been recently implemented in PARI/GP by Molin
and Page [MP22]. We also miss more complicated (and potentially in-
teresting) Artin representations.

Forthcoming work of Booker, Bober, Knightly, Krishnamurthy, Lee,
Lowry-Duda, and Seymour-Howell seeks to work out an explicit, com-
putable trace formula for general level and weight.

(3) The database currently omits all L-functions of Maass forms. In principle,
these can be constructed from current data. To do this rigorously, it
would suffice to adjust existing algorithms and implementations to handle
interval arithmetic (as the individual coefficients are specified by intervals
instead of algebraic numbers). This is attainable, but was not considered
a priority.
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