
Contemporary Mathematics

Evaluation of Modular Polynomial from Supersingular
Elliptic Curves

Maria Corte-Real Santos, Jonathan Komada Eriksen, Antonin Leroux,
Michael Meyer, and Lorenz Panny

Abstract. We present several new algorithms to evaluate modular polyno-
mials of level ℓ modulo a prime p on an input j. More precisely, we introduce

two new generic algorithms, sharing the following similarities: they are based

on a CRT approach; they make use of supersingular curves and the Deuring
correspondence; and, their memory requirements are optimal.

The first algorithm combines the ideas behind a hybrid algorithm of

Sutherland in 2013 with a recent algorithm to compute modular polynomi-
als using supersingular curves introduced in 2023 by Leroux. The complexity

(holding around several plausible heuristic assumptions) of the resulting al-

gorithm matches the Õ(ℓ3 log3 ℓ + ℓ log p) time complexity of the best known

algorithm by Sutherland, but has an optimal memory requirement.

Our second algorithm is based on a sub-algorithm that can evaluate mod-
ular polynomials efficiently on supersingular j-invariants defined over Fp, and

achieves heuristic complexity quadratic in both ℓ and log j, and linear in log p.

In particular, it is the first generic algorithm with optimal memory requirement
to obtain a quadratic complexity in ℓ.

Additionally, we show how to adapt our method to the computation of

other types of modular polynomials such as the one stemming from Weber’s
function.

Finally, we provide an optimised implementation of the two algorithms
detailed in this paper, though we emphasise that various modules in our code-

base may find applications outside their use in this paper.

1. Introduction

The evaluation of modular polynomials is one of the main subroutines involved
in the SEA point counting algorithm [19]. The main application of point counting
is to find elliptic curves suitable for cryptography. The asymptotic bottleneck
of the computation relating to “Elkies primes” in the SEA algorithm is modular
evaluation, and it is thus important to find improvements to the theoretical and
practical efficiency of modular evaluation.

More generally, modular polynomials play an important role in the theory of
elliptic curves, and so the computation and evaluation of modular polynomials is
a central task in algorithmic number theory. Aside from point counting, modular
polynomials are related to isogeny computations. While most applications tend to

2020 Mathematics Subject Classification. 11Y40.

1

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

2 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

use the more efficient Vélu formulas [44, 5], we still observe few instances where
modular polynomials have been considered. For example, it is used in the CRS key
exchange [15, 36], the first isogeny-based protocol, the OSIDH construction [12],
the reduction introduced in [2], or the fast implementation of Delfs–Galbraith pro-
posed in [37].

In this work, we introduce several new algorithms for efficiently computing
modular polynomials Φℓ of level ℓ, evaluated in one of the variables.

Related work. Almost all known methods to efficiently evaluate modular poly-
nomials first requires their computation, which is the primary reason most literature
on the topic focuses on the computation of modular polynomials.

The historical approach to computing modular polynomials is based on the
computation of the coefficients of the Fourier expansion of the modular j-function
[6, 19, 33, 29]. As this computation works over the integers, it can be applied to
compute Φℓ mod p.

An alternative approach based on the CRT method, which uses supersingular
curves and ℓ-isogeny computations, was introduced by Charles and Lauter [11] to
work entirely over Fp.

Enge [20] uses interpolation and fast floating-point interpolation to obtain a
quasi-linear algorithm over the integers under some heuristics.

One of the main problems behind the computation of modular polynomials over
the integers is the large size of their coefficients. In theory, the size of coefficients
is less of an issue when dealing with Φℓ as the coefficients are reduced modulo p.
However, this is only the case if we can avoid the computation over Z entirely,
which is not easy to obtain in practice.

Bröker, Lauter, and Sutherland (BLS hereafter) [8] obtained the first quasi-
linear complexity in both time and space with a careful application of the CRT
method using ordinary curves.

More recently, Leroux [31] revisited the CRT approach from supersingular
curves with new algorithmic results on the Deuring correspondence to obtain an
algorithm with the same complexity as BLS. Leroux claims a better practical effi-
ciency, but provided no experimental proof of this claim.

Robert [35] outlined another CRT method based on supersingular curves by
using a p-adic approach in conjunction with the high-dimensional isogeny tech-
nique introduced in the context of the cryptanalysis of the SIDH key exchange.
This method was later refined and implemented by Kunzweiler and Robert [27].
However, the main advantage of their method is mostly theoretical as it does not
require any assumptions (not even GRH!), but it is unlikely to be practical due to
a non-optimal high memory requirement. Furthermore, the implementation they
provide is in SageMath [43], rather than a low-level implementation.

In 2013, Sutherland [41] provided the first evidence that a method tailored to
the evaluation could do better than a computation algorithm. Sutherland showed
how to adapt the CRT approach from BLS to obtain two evaluation algorithms
with excellent memory requirements. However, these algorithms have essentially
the same complexity as the BLS computation algorithm [8].

Contributions. Our main contribution is the introduction of three new algo-
rithms targeted at the task of evaluating modular polynomials. Our work builds
upon the previous idea of Leroux [31] to use supersingular curves with the Deur-
ing correspondence for efficient modular polynomial computation. The fact that

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 3

his algorithms could be improved to produce a more efficient evaluation algorithm
was already mentioned by Leroux, but no precise method was described or even
outlined. In this work, we show that there are several interesting approaches to
consider in this setting. For a fixed value of ℓ, each of our new algorithms will
achieve the best known complexity for some range of primes p (relative to the size
of ℓ). Hereafter, we assume that the evaluation is done on an input j ∈ Fp that can
be seen as an integer 0 ≤ j ≤ p− 1. All the stated complexities hold under several
plausible heuristic assumptions.

(1) ModularEvaluationBigCharacteristic is a generic CRT evaluation algorithm
built on top of the OrdersTojInvariantBigSet algorithm from [31] which
combines [41, Algorithm 2.2] and ModularComputation from [31]. The
complexity is O

(
ℓ2(ℓ log ℓ+ log p) log2+ε(ℓ log ℓ+ log p)

)
and the memory

requirement isO ((ℓ log ℓ+ log p) log(ℓ log ℓ+ log p) + ℓ log p). The asymp-
totic complexity is the same as [41, Algorithm 1], but the space require-
ment is better. This algorithm will achieve the best known space/time
complexity in cases where p (i.e., the characteristic) is large.

(2) SupersingularEvaluation works on supersingular j-invariants and has a com-
plexity ofO

(
ℓ(log p4+ε + log ℓ2+ε log1+ε p) + p1/4 log3+ε p

)
, usingO(ℓ log p

+ p1/4 log1+ε p) space. Despite a limited range of applications (due to the
supersingularity constraint), this algorithm achieves the best known com-
plexity when the prime p is small, and it is the only algorithm that is
linear in ℓ.

(3) ModularEvaluationBigLevel is a generic CRT evaluation algorithm built on
top of SupersingularEvaluation. It has two main steps: a CRT prime collec-
tion of complexity O

(
ℓ2 log2 j(log2+ε(ℓ log j))

)
, and a CRT computation

of complexity O(ℓ2 log j log3+ε ℓ+ ℓ3/2 log3/2 j log ℓ3+ε+log2+ε ℓ log1+ε p).
The global space requirement is O(ℓ log(pj)). This algorithm achieves the
best known complexity of all generic evaluation algorithm if either one
of j or p is small (with respect to ℓ). In the generic case, we will have
j = Θ(p), and the complexity is quadratic in log p, which is worse than
the other algorithms. However, note that the quadratic component of the
complexity comes from the CRT prime collection, and we note that this
step only depends on the input j and can be shared among evaluations of
different modular polynomials on the same j. This could prove interesting
for applications such as point counting.

Outside of these algorithmic contributions, we also show how to adapt our
methods to work for other modular polynomials, such as the one based on the
Weber function, by exploiting a modular parametrization of elliptic curves with
order 48 level structure underlying the Weber function. This is very convenient in
practice as the sizes of the coefficients of modular polynomials associated to the
Weber function are smaller by a large constant, which makes them approximately
1728 times faster to compute than standard modular polynomials of the same level.

Finally, in Section 4, we provide an efficient implementation of all our algo-
rithms written in C++ and NTL [38]. Unfortunately, at their current state, the
implementations of our two generic algorithms do not seem to outperform the
state-of-the-art implementation from [41] for parameters that are within reason-
able computational reach. A more detailed analysis of the concrete performance
of our implementation can be found in Section 4.2. We emphasise, however, that

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

4 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

many of the algorithms we implement are useful outside their application in this
paper. We highlight in particular the following:

(1) An optimised implementation of polynomial interpolation, which outper-
forms NTL’s in-built function for polynomials of large degree.

(2) An implementation of the Deuring correspondence for generic primes, thus
providing a low-level optimised implementation of algorithms from [22],
which outperforms that implementation by a large constant factor.

(3) An optimised implementation of the computation of the endomorphism
ring of a supersingular elliptic curve defined over Fp for generic primes.

The last two routines are especially useful for the cryptanalysis and construction
of isogeny-based cryptography.

Acknowledgements. We thank Drew Sutherland and Sam Frengley for helping
us finding the maps that are needed to compute the modular polynomials associated
to the Weber function.

This work was supported in part by the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant
agreement ISOCRYPT – No. 101020788), by the Research Council KU Leuven
grant C14/24/099, and by CyberSecurity Research Flanders with reference num-
ber VR20192203. This work was also supported by the European Research Council
under grant No. 101116169 (AGATHA CRYPTY) and by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under SFB 1119 – 236615297.

1.1. Technical overview. Let p, ℓ be two distinct primes, and let j ∈ Fp.
Hereafter, we abuse notation and also write j for the unique integer between 0 and
p− 1 in the class of j modulo p. The goal of all the algorithms introduced in this
work is to compute the polynomial Φℓ(X, j) ∈ Fp[X].

Our work can be seen as an extension of the ideas introduced by Leroux in
[31] to the setting of modular polynomial evaluation, using some ideas outlined by
Sutherland in [41]. Note that the complexities of our algorithms rely on heuristic
assumptions because the complexity of Leroux’s algorithm are only proven assuming
various heuristics.

All our algorithms rely on the Deuring correspondence and the OrdersTo-
jInvariantSmallSet and OrdersTojInvariantBigSet algorithms from [31] whose goal is
to compute the set of j-invariants corresponding (under the Deuring correspon-
dence) to a set of maximal order types given as input. OrdersTojInvariantSmallSet is
generally more efficient, unless the set of j-invariants to be computed is somewhat
close to the entire set of supersingular j-invariants, where OrdersTojInvariantBigSet
is tailored to be more efficient. These two algorithms were used by Leroux to build
two new efficient algorithms to compute modular polynomials modulo p:

(1) SupersingularModularComputation directly applies OrdersTojInvariantSmall-
Set (or OrdersTojInvariantBigSet, if it is faster) to compute the necessary
j-invariants to interpolate Φℓ(X,Y) over Fp.

(2) ModularComputation is a CRT algorithm that applies SupersingularModular-
Computation on a set of small CRT primes pi before reconstructing the
result mod p. Here, SupersingularModularComputation is always used with
OrdersTojInvariantBigSet because the pi are small compared to ℓ.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 5

The approach by Leroux is amenable to ideas introduced by Sutherland [41] to
adapt the BLS modular polynomial computation algorithm to the evaluation set-
ting. Sutherland observed that there are essentially two ways to evaluate Φℓ on
j ∈ Fp. The first and most direct way is to consider j as an integer, compute
Φℓ(X, j) over the integers and finally reduce the result modulo p. This leads to
[41, Algorithm 2] which has optimal space complexity, but can be quite inefficient
when log p grows and j = Θ(p). The main problem with that method is that the
powers of j are much bigger than j over Z. This increases the size of the coeffi-
cients of Φℓ(X, j) ∈ Z[X] which has a negative impacts on the performances of this
approach.

Sutherland’s trick is to realize that we can avoid exponentiating over Z by
exponentiating over Fp where the powers of j are all in O(p). Thus, he proposes

to lift each element jk ∈ Fp to an integer ĵk for 1 ≤ k ≤ ℓ + 1, see Φℓ(X, j) as
a multivariate polynomial Pℓ(X, j1, . . . , jℓ+1) by replacing each jk by a variable jk
and evaluate this polynomial on the ĵk before reducing the result modulo p. This
gives [41, Algorithm 1], which obtains the best known complexity but requires
more space than the more naive approach. This method has the same complexity
as computing the whole modular polynomial, but requires less memory as the full
polynomial is never stored in memory.

Sutherland also presents a “hybrid” version of [41, Algorithm 1] (see [41, Sec-
tion 3.4]). This hybrid algorithm optimises the amount of data stored throughout
the computation, and so it is slower but uses an optimal amount of space.

Our first algorithm, ModularEvaluationBigCharacteristic can be seen as an adap-
tation of Leroux’s ModularComputation with the ideas behind Sutherland’s hybrid
algorithm. Similarly to Sutherland’s idea, we lift powers of j to integers ĵ1, . . . , ĵℓ+1

before evaluating the polynomial Pℓ(X, ĵ1, . . . , ĵℓ+1) with a CRT method. The com-

putation of Pℓ(X, ĵ1, . . . , ĵℓ+1) modulo the small CRT primes pi mainly relies on
OrdersTojInvariantBigSet in a manner similar to SupersingularModularComputation.
It turns out that this method requires less storage than the version using ordinary
curves, and so we can execute the analogue of Sutherland’s hybrid version without
any negative impact on the complexity.

Thus, just as ModularComputation matches the complexity of BLS, Modular-
EvaluationBigCharacteristic essentially matches the complexity of [41, Algorithm 1]
taking O

(
ℓ2(ℓ log ℓ+ log p) log2+ε(ℓ log ℓ+ log p)

)
, but with a better space complex-

ity of O ((ℓ log ℓ+ log p) log(ℓ log ℓ+ log p) + ℓ log p) that is quasi-linear in ℓ.
Our second generic evaluation algorithm ModularEvaluationBigLevel applies the

naive approach of computing Φℓ(X, j) over Z[X], but compensates the efficiency
loss caused by the large size of the powers of j in Z by noticing that modulo some
well-chosen CRT primes pi, the computation of Φℓ(X, j) mod pi can be made much

more efficient than the computation of Pℓ(X, ĵ1, . . . , ĵℓ+1) mod pi (which is essen-
tially equivalent to the computation of the full Φℓ(X,Y) mod pi). The well-chosen
primes are those where j mod pi is the j-invariant of a supersingular curve and this
efficient algorithm is our third algorithmic contribution: SupersingularEvaluation,
whose complexity is linear in ℓ. The main downside of this idea is that the proba-
bility that j mod pi is supersingular is in O(1/

√
pi) which makes the computation

of the CRT primes quite costly with a complexity of O
(
ℓ2 log2 j log2+ε(ℓ log j)

)
. In

the generic case where log j = θ(log p), this step will be the bottleneck.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

6 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

Once the CRT primes have been computed, the rest of the computation takes

O
(
ℓ2 log j log ℓ3+ε + ℓ3/2 log3/2 j log2+ε ℓ+ log2+ε log1+ε p

)
, and the overall space

requirement is O(ℓ log(pj)) which is optimal given the size of the output.
SupersingularEvaluation consists of a rather straightforward application of Orders-

TojInvariantSmallSet to compute the j-invariants ℓ-isogenous to the supersingular
j-invariant given as input. This gives a linear complexity in ℓ, but comes at
the cost of computing the endomorphism ring of the input curve, which takes
O(p1/4 log p3+ε). The final complexity is

O
(
ℓ(log ℓ2+ε log p1+ε + log p4+ε) + p1/4 log p3+ε

)
.

We note that SupersingularEvaluation is interesting in its own right, as it achieves
the best known complexity to evaluate Φℓ when the prime p is small. However, the
constraint of having a supersingular j-invariant as input is quite limiting for prac-
tical applications.

Other modular functions. We also show how to adapt our method to compute
modular polynomials associated to other modular functions such as the Weber
function. It was already suggested by Leroux in [31] that, similarly to the BLS
algorithm, the supersingular approach could be adapted to work for other modular
functions. However, unlike the prediction by Leroux, who qualified the task as “not
too daunting”, concretely implementing this comes with a few technical obstacles.
In particular, the approach taken in BLS cannot be made to work here. Our solution
uses a level structure parametrization of Weber invariants and elimination theory
to solve the issue.

Organisation of the article. The rest of this paper is organised as follows: in
Section 2, we introduce some background on isogenies, quaternion algebras and
the Deuring correspondence. The main technical contributions are introduced in
Section 3 where we present our new algorithms. Finally, in Section 4, we give some
details on our implementation.

2. Background material

Throughout the paper, we consider logarithm in base 2 that we simply write
log(·), and we use llog(·) for log(log(·)).

Background on the main topics covered in this article can be found in:

(1) Silverman [24] for elliptic curves and isogenies;
(2) Voight [45] for quaternion algebras
(3) the thesis of Leroux [30] for the algorithmic aspects of the Deuring cor-

respondence.

In short, the Deuring corrrespondence makes a link between elliptic curves and
isogenies over Fp on one side, and orders and ideals of the quaternion algebra ram-
ified at p and ∞ on the other side. This result thus provides a way to navigate
efficiently the supersingular isogeny graph by using some simple operations over
some lattices of dimension 4. This is what we call the effective Deuring correspon-
dence.

Effective Deuring correspondence. More precisely, one important algo-
rithm for us is a heuristic polynomial-time algorithm introduced in [18] which
computes the j-invariant corresponding to a maximal order type given as input.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 7

It makes use of a smooth isogeny connecting the desired j-invariant to a special
j-invariant (for instance j = 1728 or j = 0). This smooth isogeny is found using
the Deuring correspondence with the KLPT algorithm [25]. The smooth isogeny
found with KLPT is usually quite large (the heuristic estimates suggest that one

should be able to find an isogeny of degree Õ(p3) with that algorithm), and so
the concrete computation of this isogeny, for a generic prime p, can be quite slow.
The asymptotic cost of this computation is O(log4+ε p), but the constants hidden in
that complexity are dauntingly large for generic primes. Nevertheless, in [22] it was
shown that this algorithm can be made practical, even for generic primes, by apply-
ing several practical improvements to the original algorithm from [18] Henceforth,
we call this algorithm SingleOrderTojInvariant().

Remark 2.1. There seems to be a typo in [31] where the cost of this algorithm
is estimated to be O(log p5+ε). However, if we look at [23, Lemma 4] we see that
the cost should be of O(log4+ε p) (after a precomputation of log6+ε p that can be
amortized across all isogeny computations).

Efficient Deuring correspondence for several orders. In [31], Leroux
looked at the problem of the effective Deuring correspondence for a set of order
types. For a small number of orders (relative to the prime characteristic p), the
best method seems to be simply to apply SingleOrderTojInvariant() to each order
in the set. Leroux called this algorithm OrdersTojInvariantSmallSet, and we will
keep that notation throughout the paper. If S is the size of the set of orders to be
computed, the complexity of this algorithm is O(S log4+ε log p).

However, when the set contains a lot of order types, Leroux introduced a much
faster algorithm called OrdersTojInvariantBigSet (the algorithm really becomes in-
teresting for sets of size O(p)). The idea of this algorithm is to go through the entire
set of supersingular curves through quaternions and collect the desired j-invariants
along the way in order to minimize the number of isogeny computations required.

The asymptotic complexity of this algorithm is O(S log p2+ε + p log p1+ε), and
it also has better hidden constants than OrdersTojInvariantSmallSet due to the fact
that it involves the computation of isogenies of degree O(p) instead of O(p3).

Application of the Deuring correspondence to the computation of
modular polynomials. The principle that “quaternion operations” are generally
more efficient than “elliptic curve operations” is at the heart of the recent algorithm
ModularComputation of Leroux [31] for computing modular polynomials. Indeed,
the main part of this computation is to collect pairs of ℓ-isogenous j-invariants. By
working with supersingular j-invariants, Leroux showed how to exploit the effec-
tive Deuring correspondence to realize that collection with a minimal amount of
“elliptic curve” operations by working mostly with quaternions. The idea is that
the set of maximal order types corresponding to the j-invariants to be collected
can be generated purely from quaternion operations. Then, it suffices to apply the
algorithms we mention above to collect all the necessary j-invariants.

3. Evaluation of modular polynomials

In this section, we introduce our main theoretical contributions, namely the
three new algorithms ModularEvaluationBigCharacteristic, SupersingularEvaluation,
and ModularEvaluationBigLevel (respectively introduced in Sections 3.1 to 3.3). In
Section 3.4, we provide a concrete comparison with several other algorithms from

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

8 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

the literature. Finally, in Section 3.5, we explain how to adapt our method to
evaluate modular polynomials associated with the Weber invariant.

3.1. A first CRT approach for big characteristic. Our first CRT ap-
proach is inspired by the “hybrid” algorithm described by Sutherland but where
[41, Algorithm 2.2] is replaced with an algorithm SpecialSupersingularEvaluation
described below. This algorithm combines the ideas from SupersingularModular-
Computation from [31], with the trick introduced by Sutherland to perform the
evaluation with a minimal space requirement. The part of our algorithm that con-
structs the final output by CRT is identical to the one in [41, Algorithm 2]. We
therefore do not describe these steps precisely, and instead refer the reader to [40,
Section 6] for more details.

Algorithm 1 SpecialSupersingularEvaluation(p, ℓ, x0, . . . , xℓ)

Input: A prime p, a prime ℓ with ⌈p/12⌉+ 1 < ℓ and ℓ+ 1 values x0, . . . , xℓ ∈ Fp.
Output: P (Y) =

∑
i,j ai,jxiY

j where Φℓ(X,Y) =
∑

i,j ai,jX
iY j .

1: Compute the set of maximal order types O1, . . . ,Om ⊂ Bp,∞ and set S as the
list of these maximal order types

2: Compute J = OrdersTojInvariantBigSet(p,S)
3: Select a set O1,0, . . . ,Oℓ+2,0 in S
4: for i = 1 to ℓ+ 2 do
5: Find ji,0 as the j-invariant in J corresponding to Oi,0

6: Compute Ii,1, . . . , Ii,ℓ+1, the ℓ+ 1 Oi,0-ideals of norm ℓ
7: for k = 1 to ℓ+ 1 do
8: Select ji,k as the j-invariant in J corresponding to OR(Ii,k)
9: end for

10: P (ji,0, Y)←
∏ℓ+1

k=1(Y − ji,k)
11: Write P (ji,0, X) =

∑ℓ+1
k=1 ci,k−1X

k−1

12: yi ←
∑ℓ+1

k=1 ci,k−1xk−1

13: end for
14: Interpolate P (Y) mod p as the polynomial of degree ℓ+ 1 with P (ji,0) = yi.
15: return P (Y).

Proposition 3.1. SpecialSupersingularEvaluation is correct, and can be executed in
O(ℓ2 log2+ε ℓ log1+ε p+ p log2+ε p), and requires O(ℓ log p+ p log p) space.

Proof. All maximal orders in Bp,∞ can be enumerated in O(p log p) with
the techniques described for SupersingularModularComputation from [31]. By [31,
Theorem 1], the running time of OrdersTojInvariantBigSet is O(p log2+ε p). Thus,
all the steps before the main loop can be run in O(p log2+ε p).

Computing an ideal of norm ℓ takes O(log(ℓp)). Thus, the asympotic cost of
the loop is dominated by the cost of the polynomial reconstruction at the end which
takes O(ℓ log2+ε ℓ log1+ε p) with the fast interpolation algorithms. Since the loop is
repeated ℓ times, the final cost is O(ℓ2 log2+ε ℓ log1+ε p).

The sets S and J use O(p log p) space to store, and the space requirement
of OrdersTojInvariantBigSet is O(p log p). The amount of space for each iteration
of the loop is O(ℓ log p) to store the j-invariants and the polynomials P (ji,0, Y).

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 9

After each iteration of the loop, we need to store one value in Fp, so the total is
O(ℓ log p). □

Remark 3.2. The algorithm outlined as Algorithm 1 is correct up to some small
detail: order types correspond to j-invariants up to Galois conjugacy. Since we work
over Fp2 , this means that there can be up to two distinct j-invariants with the same
endomorphism ring (j and jp). In practice, this means that our algorithm needs
a small modification to know which one of the two is the correct among ji,k and
jpi,k. This can be done by modifying OrdersTojInvariantBigSet to store not only cou-
ples of order types and j-invariants, but also ideals whose corresponding isogeny’s
codomain is the computed j-invariant. Then, we can check if the j-invariant cor-
responding to Ii,k is ji,k or jpi,k by checking if Ii,k is equivalent or not to the ideal

stored along with the type of OR(Ii,k).

Algorithm 2 ModularEvaluationBigCharacteristic(p, j, ℓ)

Input: A prime p, j ∈ Fp, a prime ℓ.
Output: Φℓ(j, Y).
1: Let (ji) be the integers in [0, p− 1] equal to ji mod p for 1 ≤ i ≤ ℓ+ 1
2: Set B = 26ℓ log ℓ+18ℓ+log p+log(ℓ+2).
3: Set Pℓ = {}, P = 1, q = 12(ℓ+ 2) + 1.
4: while P < B do
5: if q is prime then
6: P ← q · P , Pℓ ← Pℓ ∪ {q}
7: end if
8: q ← q + 2
9: end while

10: Perform the pre-computations for the explicit CRT mod p using Pℓ

11: for q ∈ Pℓ do
12: Set jq to be the vector (ji) reduced modq.
13: Pq(Y)← SpecialSupersingularEvaluation(q, ℓ, jq)
14: Update the CRT sums for each coefficient of Pq(Y)
15: end for
16: Perform the post-computation for the explicit CRT to obtain P (Y) ∈ Fp[X]
17: return P (Y)

Proposition 3.3. The expected running time of ModularEvaluationBigCharacteristic
is O(ℓ2(ℓ log ℓ+log p) log2+ε(ℓ log ℓ+log p)) and requires O((ℓ log ℓ+log p) log(ℓ log ℓ+
log p) + ℓ log p) memory.

Proof. With the same reasoning as in the proof of the expected running
time of ModularComputation in [31], we can take # Pℓ = O(logB/llogB) and
maxq∈Pℓ

q = O(logB). We obtain the result by combining logB = O(ℓ log ℓ+log p)
with Proposition 3.1, and the cost of the CRT operations given in [41]. □

3.2. The supersingular case. Our algorithm to evaluate the modular poly-
nomial on the j-invariant j of a supersingular curve is simple to describe. It mainly
consists in the application of the OrdersTojInvariantSmallSet (or OrdersTojInvariant-
BigSet) algorithms from [31] to collect the j-invariants required to reconstruct

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

10 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

Φℓ(j,X) from its roots. However, the input of these algorithms are the maximal
orders isomorphic to the endomorphism ring of the curve ℓ-isogenous to j. The
simplest way to compute these maximal orders is to know the endomorphism ring
associated to j. Hence, the first building block we need is an algorithm to compute
the endomorphism ring of a supersingular curve defined over Fp.

Computing the endomorphism ring of a supersingular elliptic curve over Fp. We

introduce an algorithm EndomorphismRing of heuristic complexity Õ(p1/4). This
algorithm relies on a subroutine that computes isogenies between two given super-
singular curves over Fp, which can morally be traced back to [17, Algorithm 1]. In
this paper, it is simply refined to be efficient in practice and allow the computation
of the ideal corresponding to the computed isogeny (via the Deuring correspon-
dence). We then simply apply this algorithm between the target curve E and some
starting curve E0 of known endomorphism ring.

The main property behind this algorithm is that the set of supersingular curves
E defined over Fp with a given Fp-endomorphism ring R := End(E)∩Q(π), where
π : E → E is the p-power Frobenius endomorphism, admits (very few exceptional
cases exempt) a free and transitive group action by Cl(R). In the supersingular

setting, the only two choices are R = Z[π] ∼= Z[
√
−p] and R = Z[1+π

2] ∼= Z[1+
√
−p

2].
Thus, the set of supersingular curves over Fp with a given Fp-endomorphism ring
can be obtained by applying the action of a set of elements spanning Cl(R) on
any given starting curve E0/Fp with the correct choice of Fp-endomorphism ring
(Z[π] or Z[1+π

2], corresponding to the surface or floor of the 2-isogeny volcano).
Heuristically, we can obtain such a set by considering the combination of small
powers of O(log p) ideal classes in Cl(R). This is formalized as Heuristic 1.

This heuristic result is convenient in practice because computing a policyclic
representation as in [40, Algorithm 2.2] requires a number of operations linear in
the class number, whereas constructing the set used in the heuristic method can be
done in polylogarithmic time.

Heuristic 1. Write R ∈
{
Z[π],Z[1+π

2]
}
. There exists a constant C such that

for any prime p, any pair of elements [g1], [g2] in Cl(R), any set of ideals l1, . . . , ln
with pairwise distinct odd prime norms in R, and set of exponents e1, . . . , en such
that

∏
i=1(4ei+1) > Cp1/2 log p, there exists a =

∏n
i=1 l

bi
i with each bi ∈ [−2ei, 2ei]

such that [g1] = [a][g2] in Cl(R).

Proposition 3.4. Assuming Heuristic 1, EndomorphismRing always returns a max-
imal order isomorphic to the endomorphism ring of the input curve. The expected
running time of EndomorphismRing is O(p1/4 log p3+ε), and the expected memory
cost is O(p1/4 log p2+ε). The size of the output is O(log p).

Proof. Under GRH, the smallest value of q such that
√
−q is contained in

Bp,∞ is in O(log2 p) by a result of Ankeny [1]. Thus, with the CM method, a curve
E0 can be found using O(poly(log(p))) binary operations.

By Heuristic 1 and [10, Theorem 7], all supersingular j-invariants defined over

Fp will be spanned by
(∏n

i=1 l
bi
i

)
∗ j0, for bi ∈ [−2ei, 2ei] with overwhelming prob-

ability. Thus, we know there will be a collision in J and J0.
Under GRH, if we select the norms ℓ1, . . . , ℓn of the ideals l1, . . . , ln as the

smallest primes that are split in Z
√
−n, then we have li = O(log p1+ε) for all i, and

we have n = O(log p).

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 11

Algorithm 3 EndomorphismRing(p, j)

Input: A prime p, and the j-invariant of a supersingular curve over Fp, denoted j.
Output: ⊥, or maximal order O ∈ Bp,∞ isomorphic to End(E) where j(E) = j.
1: Let O0 be one of the maximal orders of Bp,∞ given in [25, Lemma 2,3,4]
2: Compute E0 a supersingular curve defined over Fp of known endomorphism

ring whose endomorphism ring is isomorphic to O0

3: Compute a set of ideals l1, . . . , ln in O of odd prime norm ℓ1, . . . , ℓn in O and
exponents e1, . . . , en < 10 such that

∏n
i=1(4ei + 1) > Cp1/2 log p

4: Set J0 = {(j0,O)}
5: Set J = {(j,O)}
6: for i = 1 to n do
7: for e ∈ [−ei, ei] and (j1, a1), (j2, a2) ∈ J0 × J do
8: J0 = J0 ∪ {(lbi ⋆ j1, lbia1)}
9: J = J ∪ {(lbi ⋆ j2, lbia2)}

10: end for
11: if there is a collision (j′, a), (j′, b) ∈ J0 × J then
12: return O = OR(O0ab

−1)
13: end if
14: end for
15: return ⊥

The computation of isogenies of degree ℓi can be done in O(ℓiMP(ℓi)MZ(log p)),
as Vélu’s formulas can be computed in O(ℓi) operations over the field of definition
of the kernel. The degree of the field of definition of the ℓi-torsion over Fp is O(ℓi)
(see [31, Lemma 2] for instance). And so arithmetic operations over that field can
be performed in O(MP(ℓi)MZ(log p)).

The kernel of the isogenies realizing the action of li can be computed as the
eigenvalue of the Frobenius morphism. These points can be computed by evaluating
the Frobenius on a basis of the ℓi-torsion. The overall cost of this operation is
O(
√
ℓiMP(ℓi)MZ(log p)).
With ℓi = O(log p), we get the final bound of O(log p3+ε) on the cost of each

group action computation.
Under GRH, we have h(O) = O(

√
p llog(p)), and so, by the birthday paradox,

the number of j-invariants that needs to be computed in the sets J and J0 before
a collision can be found is in O(p1/4 logε p). Thus, the expected running time of
EndomorphismRing is O(p1/4 log3+ε p).

The order O0 can be computed with coefficients over Q of size O(log p) (see
[25], for instance). The computation of O can be done in O(log p) as the coefficients
of the ideal Oab−1 are in O(p). The maximal order O can be given by 16 coefficients
over Q. Since O it is the right order of an ideal of norm in O(p), the size of the
coefficients is O(log p). The j-invariants and the ideals take O(log p) to store so the
total memory cost is O(p1/4 log1+ε p).

The output is the right order of the ideal O0ab
−1. This ideal has norm O(log p)

and so the coefficients of its right order over the basis 1, i, j, k of Bp,∞ can be upper-
bounded by O(log p). Indeed, it can be easily verified that On(ab) ⊂ O0, and so we
can express a basis of O as elements of O0 divided by n(ab). This gives the desired
upper-bound on the size of O. □

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

12 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

The supersingular evaluation algorithm. Computing Φℓ(j,X) mainly consists
in computing the j-invariants that are ℓ-isogenous to j. When j is supersingular, we
run this operation without any ℓ-isogeny computation by computing the endomor-
phism ring of j and using the Deuring correspondence to compute the ℓ-isogenous
j-invariants.

Algorithm 4 SupersingularEvaluation(p, j, ℓ)

Input: A prime p, the j-invariant of a supersingular curve over Fp, a prime ℓ.
Output: Φℓ(j, Y).
1: Compute E the curve whose j-invariant is j
2: Compute O = EndomorphismRing(p, j)
3: Compute I1, · · · , Iℓ+1 the ℓ+ 1 O-ideals of norm ℓ
4: Set S = {OR(Ii)|i ∈ {1, . . . , ℓ+ 1}}
5: Compute J = OrdersTojInvariantSmallSet(p,S) (or use OrdersTojInvariantBig-

Set(p,S) if this is more efficient)
6: return

∏
ji∈J(Y − ji)

Proposition 3.5. SupersingularEvaluation can be executed in

O
(
ℓ(log ℓ2+ε log p1+ε + log p2+ε) + p log p1+ε

)
binary operations and requires O((ℓ+ p) log p) space when OrdersTojInvariantBigSet
is used in Step 5 (assuming GRH,[31, Claim 1] and Heuristic 1). When using
OrdersTojInvariantSmallSet, it can be executed in

O
(
ℓ(log p4+ε + log ℓ2+ε log1+ε p) + p1/4 log3+ε p

)
binary operations, requiring O(ℓ log p+p1/4 log1+ε p) space (under GRH, Heuristic 1
and the heuristics from [25]).

Proof. The correctness follows directly from the correctness of the sub-algorithms.
The computation of an O-ideal of norm ℓ can be done in O(C + log ℓ) where

C is a bound on the size of the coefficients of O. Thus, by Proposition 3.4, the
complexity of computing the O(ℓ) ideals is O(ℓ(log ℓ+ log p)). The computation of
the rights orders has the same complexity.

Then, the result follows from [31, Theorem 1] for OrdersTojInvariantBigSet, the
complexity of O(ℓ log4+ε p) for OrdersTojInvariantSmallSet for a set of size O(ℓ),
Proposition 3.5 for EndomorphismRing and the complexity of the algorithm to com-
pute a polynomial from its roots by building a product tree.

The memory requirements follow from the same results. □

3.3. A second CRT algorithm for big level. We obtain our second generic
algorithm to evaluate modular polynomials by applying SupersingularEvaluation on
a set of well-chosen small primes and then reconstructing the desired result using
the CRT method. The only constraint on the choice of the CRT primes is that
we need to find primes pi where the reduction modulo pi of the j-invariant to be
evaluated is supersingular.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 13

Algorithm 5 ModularEvaluationBigLevel(p, j, ℓ)

Input: A prime p, j ∈ Fp, a prime ℓ.
Output: Φℓ(j, Y) ∈ Fp[X].
1: Let j be the integer in [0, p− 1] equal to j mod p
2: Set B = 26ℓ log ℓ+18ℓ+(ℓ+1) log j+log(ℓ+2)

3: Pℓ(j)← {}, P ← 1
4: ∆← ⌈logB⌉
5: Compute P∆ as the set of primes smaller than ∆ with Eratosthenes sieve
6: qδ ← maxP∆, n← q∆ + 2
7: while P < B do
8: S ← [n, n+ 1, . . . , n+∆]
9: Remove all multiples of the elements of P∆ from S

10: for q ∈ S do
11: Let jq = j mod q and Eq be the elliptic curve over Fq of j-invariant equal

to jq
12: if Eq is supersingular then
13: P ← q · P , Pℓ(j)← Pℓ(j) ∪ {q}
14: end if
15: end for
16: n← n+∆+ 1
17: if q2∆ ≤ n then
18: S = [q∆ + 2, q∆ + 3, . . . , 2q∆ + 1]
19: Remove all multiples of the elements of P∆ from S
20: P∆ ← P∆

⋃
S

21: q∆ ← maxP∆

22: end if
23: end while
24: Perform the pre-computations for the explicit CRT mod p using Pℓ

25: for q ∈ Pℓ do
26: Pq(Y)← SupersingularEvaluation(q, jq, ℓ)
27: Update the CRT sums for each coefficient of Pq(Y)
28: end for
29: Perform the post-computation for the explicit CRT to obtain P (Y) ∈ Fp[X]
30: return P (Y)

Proposition 3.6. ModularEvaluationBigLevel is correct and, under the Lang–Trotter
Conjecture [28], Heuristic 1, and the heuristic from [25], the computation of Pℓ(j)
can be done in

O
(
ℓ2 log2 j(log1+ε(ℓ log j))

)
and the rest of the computation in

O
(
ℓ2 log j log3+ε ℓ+ ℓ3/2 log3/2 j log ℓ3+ε + ℓ log2+ε log1+ε p

)
.

The memory complexity is O(ℓ log(pj)) for each step.

Proof. According to the Lang–Trotter conjecture, there are O(
√
x/ log x)

primes q smaller than x such that the reduction of any given j ∈ Q modulo
q is supersingular. To ensure that their product is bigger than B, we can take
x = O(log2B), and there will be O(logB/llogB) different primes.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

14 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

With logB = O(ℓ log j), we obtain #Pℓ(j) = O(ℓ log j/ log(ℓ log j)) and so
maxq∈Pℓ(j) q = O(ℓ2 log j2). The set Pℓ(j) takes O(ℓ log j) memory to store.

The algorithm we propose to use to compute Pℓ(j) is a simple variation of the
segmented sieve of Bays and Hudson [4] that can enumerate through all primes
smaller than a given x in O(xllogx) complexity while using O(

√
x) space when ∆ =

O(
√
x), and combine it with supersingularity tests on the fly (to avoid storing a list

of all the primes smaller than x). Supersingularity testing over Fq can be performed

in O(log2+ε q) [42], and it is only performed on prime numbers. Thus, we end up
with a total complexity of O

(
ℓ2 log2 j(log1+ε(ℓ log j))

)
and a space complexity of

O(ℓ log j) to compute Pℓ(j).
For each q, by Proposition 3.1 and the fact that q = O(ℓ2 log j), the complexity

of the execution of SupersingularEvaluation with OrdersTojInvariantSmallSet (which
will be faster than using OrdersTojInvariantSmallSetbecause p = Θ(ℓ2 log2 j)) is

O
(
ℓ(log4+ε(ℓ log j) + log2+ε ℓ log1+ε(ℓ log j)) + ℓ1/2 log j1/2 log(ℓ log j)3+ε

)
.

We deduce that the global cost of all the executions of SupersingularEvaluation is

O
(
ℓ2 log j log3+ε(ℓ log j) + ℓ3/2 log3/2 j log2+ε(ℓ log p)

)
.

Finally, the cost of the CRT computation is O(log2+ε log1+ε p) as shown in [8]. This
concludes the proof of the final complexity result.

The prime search can be done with O(ℓ log j) memory (to store the set Pℓ).
Each execution of SupersingularEvaluation requires a memory of

O(ℓ log(ℓ log j)) + ℓ1/2 log1/2 j log1+ε log(ℓ log j).

The only thing to store between each CRT prime computation are the CRT data
whose size is O(ℓ log p). This proves the result on the memory requirement. □

Remark 3.7. We note that unlike most other CRT algorithms, in the generic case
where j = Θ(p), the asymptotically dominant step of ModularEvaluationBigLevel is
the selection of the primes.

Sharing the computation of the CRT primes. The set of primes Pℓ(j) only
depends on the value of j. Thus, if we want to evaluate modular polynomials of
different levels at the same j-invariant (like in the SEA algorithm), the cost of the
selection of the primes can be done once and for all for the biggest levels, and then
the computation for each level can simply use a subset of these primes. This means
that for enough levels, the bottleneck will not necessarily be the computation of
the primes anymore. In particular, in point counting for elliptic curves over a finite
field of prime characteristic of bitsize n where one needs to evaluate j on O(n)
modular polynomials of level O(n), the cost of the prime selection is amortized
over the different levels.

3.4. Comparison between the existing methods. The best algorithms
from the literature are Sutherland’s algorithms from [41] and Robert’s algorithm
from [35]. We are going to compare our new algorithms with them. To establish
what is the best asymptotic algorithm, we fix a value of ℓ and vary the value of p
(and j when it is relevant). We will see that the best algorithm will change as p
grows.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 15

In [41], Sutherland introduces three different CRT algorithms to compute mod-
ular polynomials. The main one has a complexity of

O
(
ℓ2(ℓ log ℓ+ log p) log2+ε(ℓ log ℓ+ log p)

)
,

with a O(ℓ log p + ℓ2 log(ℓ log ℓ + log p)) space requirement. The complexity is es-
sentially the same as the cost of computing the entire modular polynomial with a
CRT algorithm, but the memory requirement is smaller. Despite this, the space
complexity is quadratic in ℓ, which is not optimal since the size of the output is
O(ℓ log p). The second algorithm due to Sutherland achieves a O(ℓ3+ε log p) com-
plexity with an optimal space requirement. The third is a hybrid version of the
first two and has a complexity of O(ℓ3 log6+ε ℓ). It also requires an optimal amount
of space.

More recently in [35], Robert briefly outlined an algorithm with time com-
plexity equal to O(ℓ2 logα+ε ℓ log p) where α is at best equal to 1 + 2u (according
to [35, Proposition 3.1]) for u ∈ {1, 2, 4} such that ℓ minus a product of small
primes powers is equal to a sum of u squares. Heuristically, by adjusting the prod-
uct of small primes, one can expect to find a case where u = 2. Thus, at best,
the complexity of Robert’s algorithm should be O(ℓ2 log5+ε ℓ log p). However, note
that Robert’s paper only gives an outline of the algorithm and of its complexity
analysis. Without clear statements, it is hard to assess the real complexity of the
algorithm. Indeed, from the statements in [35], it is not completely clear to us if
his asymptotic estimate can be used in the generic case. If not, then the correct
value of α is actually 3 + 2u = 7. The space complexity of Robert’s algorithm is
not clearly stated either, but it does not seem to be optimal.

Thus, for small values of p or j, our algorithm ModularEvaluationBigLevel ap-
pears to have the best known asymptotic complexity. In particular, if j = O(pε)
for ε < 1, then our algorithm has the best complexity of all existing algorithms.

If j = Θ(p), as p grows, the quadratic factor in log j in our complexity will
mean that ModularEvaluationBigLevel will be outperformed by Robert’s algorithm.
The asymptotic complexity tells us that the breaking point should occur when
log p ≈ log ℓ1+2u. Although, note that Robert’s algorithm probably requires more
memory, therefore there may be some practical case where our algorithm would
still outperform Robert’s. Also note that if we remove the cost of the CRT prime
computation (that can be shared among the computation for several levels as al-
ready argued), then we expect our algorithm to outperform Robert’s for a much
larger range of primes (up to log p ≈ ℓ).

When ℓ = O(log p), the best complexity will be obtained by Sutherland’s first
CRT algorithm and our ModularEvaluationBigCharacteristic algorithm, but Modular-
EvaluationBigCharacteristic has a better space complexity than Sutherland’s algo-
rithm (which is quadratic in ℓ).

Note that the proof of the complexity of Robert’s algorithm does not require
any assumptions, whereas our method and Sutherland’s are only heuristic.

In Section 4.2, we will compare the practical performance of our C++ imple-
mentation with the one from Sutherland.

3.5. Other modular functions. Modular polynomials can be generalized
to modular functions other than the j-function. Considering other kinds of mod-
ular polynomials is a well-known trick to make computations more efficient (see
for instance [8]). Indeed, these alternate modular polynomials may have smaller

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

16 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

coefficients. One of the most interesting examples appears to be the modular poly-
nomial associated to the Weber function f. Over C(j), this function is a root of the
polynomial

(3.1) Ψ(X, j) = (X24 − 16)3 − jX24

and the logarithmic height bound of the associated modular polynomial Φℓ
ℓ is ex-

pected to be 72 times smaller than the one of Φℓ. Moreover, the coefficient of XaY b

is non-zero if and only if ℓa + b = ℓ + 1 mod 24. These two facts imply that the

complexity of computing Φf
ℓ should be roughly 72× 42 = 1728 faster than Φℓ. By

using the simple algebraic relation between j and f given by Eq. (3.1), it quickly

becomes more efficient to use Φf
ℓ rather than Φℓ.

Over Fq, every j-invariant is associated to several f-invariants that are the roots
of Ψ(X, j) given in Eq. (3.1). In fact, this polynomial comes from the covering map
of X(1) ∼= P1 by XH , a modular curve of level 48 isomorphic to the map labelled

48.72.0.d.1 in the (Beta version of the) LMFDB [32]. The polynomial Φf
ℓ can

be constructed from f-invariants in a manner analogous to Φℓ from j-invariants.
When ℓ is coprime to 48, it makes sense to talk about ℓ-isogenous f-invariants, and

evaluating Φf
ℓ(f0, X) can be done by computing all the ℓ-isogenous f-invariants.

This idea was described in BLS [8], and Leroux already stated in [31] that the
BLS method could be extended to this setting analogously. The goal of this section
is to explain how this can be realized concretely. We find that the BLS method
cannot be directly applied, and instead new ideas are needed. The main obstacle
of using f-invariants instead of j-invariants is the multiplicity of the polynomial
Ψ, which implies that there are several f-invariants corresponding to the same
j-invariant (in the worst case, 72). Therefore, to find the ℓ-isogenous f-invariants,
the usual method of projecting from XH down to X(1), finding an ℓ-isogenous
j-invariant, and then lifting again to the correct f-invariant does not work. Indeed,
it is hard to know which lift of j to consider.

The method used in [8]. Bröker, Lauter, and Sutherland overcome this obstacle
by working purely over XH . Indeed, by using the class group action of a quadratic
imaginary order of conductor ℓ on X(1), they enumerate the set of neighbours in
the ℓ-isogeny graph. This action can then be extended to XH . More explicitly, by
using the modular polynomial of level ℓi, one can compute the action of ideals of
small norm ℓi. When working over XH , we can simply use the modular polynomial

Φf
ℓi

instead, and the roots will directly give the ℓi-isogenous f-invariants. We fur-
thermore remark that this method works as the BLS method only needs to consider
points of XH(Fp).

To adapt this idea to our setting of supersingular curves defined over Fp2 , the
main problem is that the required j-invariants are not computed with the help of
modular polynomials, but rather as the codomain of certain isogenies. As there are
no efficient isogeny formulæ for isogenies of degree ℓ between elements of XH(Fp2),
we cannot directly derive the ℓ-isogenous f-invariants. Our idea is to use a different
interpretation of the curve XH . Indeed, modular curves are known to parametrize
elliptic curves enriched with level structure. Thus, if we have an explicit way to
associate the elements of XH with curves and associated level structure of order 48
(meaning that we can compute the value of the f-invariant only from the curve and
the level structure), then it suffices to push the level structure through the isogenies

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 17

of degree ℓ to be able to recover the ℓ-isogenous f-invariant. This will work for ℓ
coprime to 48, hence for every prime ≥ 5.

The parametrization associated to XH . The level of XH is 48 = 3 × 16, so we
instead consider the level structure of order 3 and 16 separately.

Let us first consider the level 3 part. For this, we look at Eq. (3.1) and observe
that if f is a root of Ψ(X, j) for a given j, then f8 is a root of Ψ′(X, j1/3) =
(X3 − 16)−Xj1/3. This is convenient because the j-function is well-known to be
the cube of another modular function of level 3, often denoted by γ2. In terms of
modular curves, this can be interpreted as the cover map

X+
ns(3)→ X(1), t 7→ t3.

There is a classical formula to compute the three possible γ2-invariants above a
given j-invariant of a curve E and the x-coordinates of E[3] (see for instance in [9,
Section 6.6, Example 1]). If E is the curve y2 = x3 +Ax+B and x1, x2, x3, x4 are
the x-coordinates of the non-trivial points of E[3], then the roots of X3 − j(E) are
given by

−48A
2A− 3(x1x2 + x3x4)

,
−48A

2A− 3(x1x3 + x2x4)
,

−48A
2A− 3(x1x4 + x3x2)

.

In summary, given an ordering for the x-coordinates of the non-trivial points of
E[3], we can compute the three possible γ2-invariants associated to E. This covers
the part of level 3.

We now consider the level 16 part. Here, we look for the solutions of Ψ′′(X, j) =

(X8 − 16)3 − jX8, which will correspond to f3. The map t 7→ (t8−16)3

t8 corresponds
to the cover of X(1) by the modular curve XH′ of level 16 labelled as 16.24.0.p.1 in
the new beta version of LMFDB. To the best of our knowledge, there are no known
formulas to recover the f3-invariant from a level structure of order 16. Such formulas
certainly exist, but it is unclear to us how can they be computed efficiently. Instead,
we propose to use the much better studied modular curve Xs(16) above XH′ . In
particular, Xs(16) parametrizes curves together with two subgroups of order 16
which intersect trivially. In this way, given a curve E(Fq) and two subgroups
G1, G2 ⊂ E[16](Fq), we can recover the corresponding element of Xs(16)(Fq) by
looking at the common preimage of j(E) through the two maps Xs(16) → X(1)
factoring through the two covers

ψ1 : Xs(16)→ X0(16), E,G1, G2 7→ E,G1,

ψ2 : Xs(16)→ X0(16), E,G1, G2 7→ E,G2;

see Figure 1.

Remark 3.8. The method that we outlined above works most of the time, but there
are some problems when there exist 16-isogenies between the same pair of curves
(as the map X0(16) → X(1) × X(1) is not injective anymore and so our GCD
polynomial will have several roots). In that case, it is still possible to identify the
element of X0(16) corresponding to the given subgroup of order 16 by decomposing
the 16-isogeny associated to this subgroup as 4 isogenies of degree 2, finding the 4
X0(2) points corresponding to each of these 2-isogenies, and finally identifying the
correct root of the GCD with the different existing maps from X0(16) to X0(2).

We do this as follows:

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

18 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

Xs(16)

X0(16) X0(16)

X(1)

X ′
H

Figure 1. Modular covers of X(1) by Xs(16)

(1) Compute the points of X0(16) lying above the two pairs (j, j1) and (j, j2)
of j-invariants, i.e., for k = 1, 2, compute xk such that ρ(xk) = (j, jk)
where ρ : X0(16)→ X(1)×X(1) is given by

ρ(X) :=

(
G0(16)(X)

H0(16)(X)
,
I0(16)(X)

J0(16)(X)

)
,

for G0(16)(X), H0(16)(X), I0(16)(X), J0(16)(X) ∈ Z[X]. If it fails be-
cause there are multiple solutions, use the method outlined in Remark 3.8

(2) Recover the point (x, y) on Xs(16) above the two points of X0(16) by
finding a solution to the system of equations consisting of

Fs(16)(X,Y) = 0
Gs(16)(X)

Hs(16)(X,Y)
= (x1)

Is(16)(X)

Js(16)(X,Y)
= (x2),

for Fs, Gs, Hs, Is, Js ∈ Z[X,Y]. Where F is the equation of Xs(16), and
Gs

Hs
, Is
Js

give the two projection maps Xs(16)→ X0(16).

(3) Project this point (x, y) on Xs(16) to X
′
H via φ : Xs(16) → X ′

H , defined
as

φ(X,Y) :=
−16X6Y 12 −X6Y 4 + 64X2Y 16 + 20X2Y 8 +X2

32Y 15 + 4Y 7
.

Then, φ(x, y) = f3.

The formulas for all the maps involved in the computation described above can be
found in the full version of this paper. Some of these maps can be found on the
LMFDB, and the other maps were computed using MAGMA [7].

To develop an efficient algorithm that follows the procedure above, we use the
method detailed in [13, §5]. We first define polynomials

f1(X,Y) := Fs(16)(X,Y),

f2(X,Y) := Gs(16)(X,Y)− α1(j, j1)Hs(16)(X,Y),

f3(X,Y) := Is(16)(X,Y)− α2(j, j2)Js(16)(X,Y),

where, for k = 1, 2, αk ∈ Z[j, jk] is defined as

αk(j, jk) := gcd
(
G0(16)(X)− jH0(16)(X), I0(16)(X)− jkJ0(16)(X)

)
.

For i, j ∈ {1, 2, 3}, we also define polynomials

Ri,j(Y) := resX(fi(X,Y), fj(X,Y)) ∈ Z[j, j1, j2][Y].

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 19

By the elimination property of the resultant (e.g., see [16, §3.6, Lemma 1]), the
specialisations (Ri,j)[E,G1,G2](Y) given by evaluating the coefficients of each Ri,j at
j := j(E), j1 := j(E/G1) and j2 := j(E/G2), vanish at the Y -coordinate of any
common solution to the specialised polynomials (fj)[E,G1,G2](X,Y).

However, these resultants (generically) have factors which correspond to spuri-
ous (unwanted) solutions. Therefore, we instead consider polynomials where these
spurious solutions have been removed, namely:

P1,2(Y) :=
16

Y 108(16Y 8 + 1)7
·R1,2(Y), and

P2,3(Y) :=
16

Y 77(16Y 8 + 1)7
·R2,3(Y).

Note that now P1,2 and P2,3 are coprime.
If there exist x, y ∈ Fp such that (fi)[E,G1,G2](x, y) = 0 for each i = 1, 2, 3 then

the degree of

g(Y) := gcd
(
(P1,2)[E,G1,G2](Y), (P2,3)[E,G1,G2](Y)

)
is 1. Conversely, if y ∈ Fp is a root of g(Y), then there exist x, x′ ∈ Fp such that

(f1)[E,G1,G2](x, y) = (f2)[E,G1,G2](x, y) = 0, and

(f2)[E,G1,G2](x
′, y) = (f3)[E,G1,G2](x

′, y) = 0.

We assume x = x′ (otherwise, we throw an error and restart the procedure; note
this will only happen with negligible probability).

Therefore, from a gcd computation, we can extract y ∈ Fp, and then recover
x via a square root computation. Then, (x, y) is a point on Xs(16), and we have
f3 = φ(x, y), where φ : Xs(16)→ X ′

H .
In practice, rather than computing the polynomials P1,2 and P2,3 on the fly, we

precompute and store them. Then, given E,G1, G2 defined over Fp, we evaluate the
polynomials at corresponding j, j1, j2, reduce them modulo p, and compute their
gcd. We summarise the discussion above in Algorithm 6. Here, Roots denotes a
function that returns the roots of a polynomial over a finite field.

Algorithm 6 GetWeberCube(p, j, j1, j2)

Input: A prime p, and j-invariants j, j1, j2 of E,E/G1, E/G2 respectively.
Output: The cube f3 of the f-invariant associated to E.
1: Evaluate the coefficients of P1,2(Y) at j, j1, j2 and reduce modulo p to obtain
h1(Y) ∈ Fp[Y]

2: Evaluate the coefficients of P2,3 at j, j1, j2 and reduce modulo p to obtain
h2(Y) ∈ Fp[Y]

3: c0Y + c1 ← gcd(h1, h2)
4: y ← −c1 · c−1

0

5: rts← Roots(f1(X, y))
6: for r in rts do
7: if f3(r, y) = 0 then
8: return φ(r, y)
9: end if

10: end for
11: return ⊥

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

20 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

In conclusion, an ordering x1, x2, x3, x4 of the x-coordinates of E[3] and two
subgroups of order 16 with trivial intersection in E[16], we obtain two polynomials
in X8 and X3. It then suffices to take the gcd to find the value of the Weber
invariant associated to this level structure of order 48 on E: if t is the output of
GetWeberCube(p, j, j1, j2), we compute

gcd(X3 − t,X8 − γ2)

and obtain f-invariant associated to E.
To find the ℓ-isogenous f-invariants corresponding to some ℓ-isogeny φ it suffices

to evaluate the level structure in φ and repeat the procedure depicted above. Since
our algorithms relies on computing alternative paths through the Deuring corre-
spondence (in particular, we never explicitly compute any ℓ-isogenies), obtaining
this evaluation requires the use of techniques which at this point are standard in
isogeny-based cryptography. We refer to Section 4.1 for details.

4. Implementation results

We have implemented the algorithms ModularEvaluationBigLevel and Modular-
EvaluationBigCharacteristic in C++/NTL. The aim of this section is to give an
overview of the code-base, before we present our implementation results.

4.1. Implementation details. We first describe the different parts of our
library, which is available at:

https://github.com/tonioecto/

modular-polynomial-computation-and-evaluation-from-supersingular-curves

NTL functionalities. Our library uses NTL to perform basic arithmetic over
finite fields Fpk (for k ≥ 1), and can be compiled both using classes NTL::zz p

and NTL::zz pE or NTL::ZZ p and NTL::ZZ pE if needed, integer arithmetic using
class NTL::ZZ, and polynomial arithmetic using classes NTL::zz pX, NTL::zz pEX or
NTL::ZZ pX, NTL::ZZ pEX if needed. We furthermore use NTL vectors and matrices
constructed from these classes.

Finding CRT primes. We precomputed a list of all primes up to 225, and use a
segmented version of the sieve of Eratosthenes [4] to find larger primes if required
(with an upper bound of 250). Based on the implementation of [14], it takes an
interval [L,R] and finds all contained primes. Sieving different intervals is indepen-
dent, so the segmented sieve parallelizes perfectly.

Instead of storing all primes and testing supersingularity of the corresponding
elliptic curves later, we run supersingularity tests on the fly after identifying all
primes in a sieving interval [L,R]. Since the overwhelming majority of curves we test
is ordinary, our implementation benefits most from a test that discards those curves
quickly. Following [3], the best choice in our context is Sutherland’s supersingularity
test based on determining whether the 2-isogeny graph has a volcano structure
(ordinary case) or not (supersingular case) [42]. We implement Sutherland’s test
including the optimisations proposed in [3].

Field arithmetic. We require arithmetic in Fp2k for small k. For all basic op-
erations, we rely on NTL. Further, we precompute a matrix corresponding to the
Frobenius action. Additionally, due to how the isogeny computations work, we also

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

https://github.com/tonioecto/modular-polynomial-computation-and-evaluation-from-supersingular-curves
https://github.com/tonioecto/modular-polynomial-computation-and-evaluation-from-supersingular-curves

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 21

need a fixed, effective embedding ιk : Fp2 ↪→ Fp2k for all k used. This embedding is
given by a fixed image ιk(ω), where ω is a fixed generator of Fp2 of trace 0.

For an element a + bω ∈ Fp2 (represented in NTL as the tuple (a, b)), we can
easily lift this to Fp2k by computing a + ιk(ω)b in Fp2k . To coerce elements into
Fp2 , we proceed as follows. Given an element α ∈ Fp2k (represented in NTL as the
tuple (a1, . . . , a2k)), which we know is in the image of ιk, i.e., α = ιk(a+ ωb):

(1) Recover a from the trace as a = trα
2k .

(2) Recover b as aj/ιk(ω)j , where j > 1 is any non-zero index of the repre-
sentation (ιk(ω)1, . . . , ιk(ω)2k) of the element ιk(ω).

We extended these lifting and coersion operations to the polynomial rings Fp2k [X],
by lifting and coercing each coefficient, respectively.

Elliptic curves and isogenies. We implement standard elliptic curve operations
using Weierstraß curves. One of the main computational tasks required by the
elliptic curve part of our library is the computation of smooth degree isogenies
given by kernel generators of smooth order defined over small extensions Fp2k of Fp2 .
This setting is similar to that in [22], and thus the strategy employed is the same.
Namely, we use supersingular curves E with π2

E = [−p], where πE denotes the
p-Frobenius endomorphism on E. As a result, all the isogenies will be defined
over Fp2 , even if the kernel generators are not. Due to this, we can compute
our isogenies by recovering the kernel polynomial using [22, Algorithm 4], before
employing Kohel’s formula to recover the isogeny [26, Chapter 2.4].

Computing the endomorphism ring of a given supersingular elliptic curve E
defined over Fp is done by brute-force searching an isogeny to a curve with known
endomorphism ring. Concretely, we start by determining the Fp-endomorphism

ring R of E; the two cases Z[π] ∼= Z[
√
−p] and Z[1+π

2] ∼= Z[1+
√
−p

2] are readily dis-
tinguished by testing whether the rank of E(Fp)[2] equals 1 or 3 respectively. This
boils down to checking whether the cubic polynomial f(x) in the short Weierstraß
equation y2 = f(x) defining E splits over Fp or not. Then, using a suitable starting
curve E0 with the same Fp-endomorphism ring and known Fp2 -endomorphism ring,
there must exist an ideal class [a] ∈ Cl(R) such that [a] ∗E0 = E, which we recover
using a straightforward meet-in-the-middle brute-force search using a (heuristic)
generating set of small generators for Cl(R). In practice, this means we do not set
explicitly the constant C from Algorithm 3, we just increase the exponents until a
solution is found.

Lattices in quaternion algebras. Our library identifies the quaternion algebra
B = H(−q,−p) simply by the pair p, q ∈ Z, and the format of its elements consists
of a reference to B together with a 5-tuple of integers t, x, y, z, d ∈ Z representing the
quaternion (t+xi+yj+zk)/d. Arithmetic in this representation is straightforward.
We further represent a quaternion lattice I by a basis matrix in Q4×4, which is in
turn represented as a matrix in Z4×4 together with a denominator in Z. All basic
functionality for quaternion lattices, such as computing the intersection, product, or
sum of two lattices, computing left or right orders, or finding canonical or reduced
lattice bases, all essentially rely on the linear-algebra routines provided by NTL.

Our library also includes an implementation of a variant of the KLPT algorithm
[25], which works for all primes where there exists an embedding K ↪→ Bp,∞, where
K is an imaginary quadratic field of class number 1. Note that this is a very mild
assumption on the prime p (a quick heuristic estimate is that only 1 in every 29

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

22 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

primes fail this requirement). Our implementation uses the standard improvement
due to Petit and Smith [34] to reduce the output size. However, our implementation
also differs in another way. The output size (with the improvement from [34]) of

KLPT is typically stated as being in Õ(p3). However, this is based on the heuristic
that the shortest prime-normed equivalent ideal is of norm O(p1/2 log(p)). While
this heuristic almost never fails in large characteristic, we are working in small
enough characteristic to regularly encounter ideals where this fails. Hence, we
change the size of the solution we search for on the fly to be in Õ(p2N2

I), where NI

denotes the norm of the shortest prime-normed equivalent ideal.1

Orders to j-invariants. In OrdersTojInvariantSmallSet, we repeatedly apply the
same procedure as in [22] to translate orders to j-invariants. The only difference
is that our implementation has precomputed elliptic curves E/Q with CM by an
order of class number 1, together with the isogeny ι defining the complex multipli-
cation. Thus, for the first step described in [22], we can take the starting curve
E0/Fp, to be a supersingular reduction of one of our precomputed curves. Note that
the requirement on p that one of the precomputed curves has supersingular reduc-
tion coincides with the requirement we described for KLPT (except for a constant
number of primes p, where the precomputed curves might have bad reduction).
Further, note that for p ≡ 1 (mod 12), the isomorphism O0

∼= End(E0) cannot be
determined solely by the (reduction of the) endomorphism ι; see [22, Section 3.1]
for details, and how to resolve this ambiguity.

ModularEvaluationBigCharacteristic also requires the OrdersTojInvariantBigSet al-
gorithm introduced in [31] to compute efficiently all the supersingular j-invariants
and the corresponding maximal order. Our implementation follows quite closely the
algorithm detailed by Leroux (see [31, Algorithm 1]). Maximal orders are repre-
sented by the 3 successive minima (that can be computed with LLL) of the trace-0
sublattice.

Computing Weber invariants. To compute the Weber invariant of a curve with
a given level structure, we implement the ideas discussed in Section 3.5. In par-
ticular, we implement subroutines to evaluate multivariate polynomials of degree
2 and 3 (NTL only supports univariate polynomials), and we use built-in NTL
functions for gcd computations and root finding. Furthermore, the algorithm
requires computing the gcd of two precomputed resultants, which are stored in
getresultants.cpp. The memory cost of the hardcoded resultants is negligible in
the context of the full algorithm, and the efficiency gain is significant.

To obtain the ℓ-isogenous Weber invariants in ModularEvaluationBigLevel, we
also need to evaluate the level structure at the ℓ-isogenies. Since no ℓ-isogenies
are ever explicitly computed, this is done by evaluating the level structure on a
well-chosen endomorphism, before pushing it through the alternative isogeny path
we have computed. Explicitly, this endomorphism equals the composition of the
ℓ-isogeny with the dual of the alternative path, and can be found by multiplying
the corresponding ideals.

Furthermore, OrdersTojInvariantBigSet needs to be adapted to work with Weber
invariants instead of j-invariants. For that, we represent Weber invariants as a
j-invariant together with some basis of the 48-torsion, and with some coefficients

1Note that we do have the guarantee that NI ∈ Õ(p), hence the size of the output size is still

upper bounded by Õ(p4).

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 23

to represent the level structure in the basis. By exploiting the symmetries coming
from the Weber function, we obtain an efficient algorithm to recover the full list of
Weber invariants.

OrdersTojInvariantBigSet also needs to be adapted to work with Weber invari-
ants instead of j-invariants, and so we need to modify OrdersTojInvariantBigSet
to compute all supersingular f-invariants as well. For that, we will use our level
structure parametrization of f-invariants. That way, by using a basis of the 48-
torsion, each Weber invariant can be fully derived from a set of small integers
(giving the coefficients of the points of the level structure in the basis). Then,
it suffices to propagate the 48-torsion basis throughout the isogenies involved in
OrdersTojInvariantBigSet. For each supersingular j-invariant, we will then need to
compute all f-invariants above it from the basis. The symmetries coming from the
Weber function allow us to be much more efficient to recover the full list of Weber
invariants than one application of the algorithm we described in Section 3.5 for
each of the 72 Weber invariants.

The CRT method. For the implementation of the CRT method in our library,
we follow Sutherland’s software classpoly [39] based on [21, 40]. In particular,
our CRT functions in crt.cpp take heavy inspiration from crt.c in Sutherland’s
software. The main difference is that our algorithms use C++/NTL rather than
C/GMP. We therefore defer a detailed explanation on the implementation of the
CRT method to these previous works.

Polynomial interpolation. In our library, we implement univariate polynomial
interpolation following Algorithm 10.11 in [46, §10]. In particular, we implement
two main functions:

• An algorithm to interpolate a univariate polynomial f(X) ∈ Fp2k [X] of
degree d at d+ 1 points (x0, f(x0)), . . . , (xd, f(xd)).

• An algorithm to interpolate a univariate polynomial f(X) ∈ Fp2k [X] of
degree d from its roots (x1, . . . , xd). This is a special case of the first
algorithm where f(xi) = 0, but here we optimise for this case.

We remark that these algorithms outperform the in-built NTL interpolation func-
tion interpolate and the NTL function BuildFromRoots, respectively, for poly-
nomials of relatively large degrees (which is our use case in this paper).

4.2. Results. In this section, we present the performance of our implemen-
tation of the algorithms ModularEvaluationBigLevel and ModularEvaluationBigChar-
acteristic, and compare it to the state-of-the-art [41].

Performance analysis. All code was compiled and run on a Linux server with
two AMD EPYC 9754 CPUs running at 2.25GHz (with dynamic frequency scal-
ing and simultaneous multithreading disabled), 1TB RAM, and using g++ ver-
sion 15.1.1 with flags -std=c++17 -O3 -march=native -DNDEBUG.

We ran experiments for the Weber variant of both algorithms ModularEvalua-
tionBigLevel and ModularEvaluationBigCharacteristic (i.e., we compute the Weber
modular polynomial evaluated at a Weber invariant). To understand the perfor-
mance of these algorithms for varying level ℓ, we fix the characteristic p = 231 − 1,
the Weber invariant w = 2, and run both algorithms for the same set of growing
levels ℓ. Since our implementation is heavily multithreaded, to enable a meaningful
comparison with data collected on other hardware, we report the CPU core time

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

24 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

(i.e., in single-core equivalents) rather than the wall-clock time consumed by each
run of each algorithm. Our results are summarized in Table 1.

We see that despite a better asympotic complexity in ℓ, we were not able to
reach a point where ModularEvaluationBigLevel is faster than ModularEvaluation-
BigCharacteristic. This is the due to the fact that the hidden constants in the
asymptotic complexity of the SingleOrderTojInvariant algorithm are very large (due
to the computation of a smooth isogeny of degree ≈ p3). Nonetheless, the current
data is enough to witness that the scaling of ModularEvaluationBigLevel and Mo-
dularEvaluationBigCharacteristic are indeed quadratic and cubic in ℓ respectively.

Table 1. Experimental data: CPU core time consumed by runs of
ModularEvaluationBigLevel and ModularEvaluationBigCharacteristic
for various levels ℓ, fixing the characteristic p = 231 − 1 and the
input Weber invariant w = 2.

Level ℓ ModularEvaluationBigLevel ModularEvaluationBigCharacteristic Ratio

211 7.68min 18.191 s 25.3

419 24.01min 40.702 s 35.4

607 51.34min 1.24min 41.3

811 1.46 h 2.00min 43.7

1019 2.28 h 3.07min 44.5

2003 9.12 h 15.13min 36.2

3011 21.54 h 46.53min 27.8

4003 1.63 d 1.65 h 23.7

5003 2.66 d 3.31 h 19.3

6007 3.89 d 5.49 h 17.0

7019 5.32 d 8.42 h 15.2

8011 7.00 d 12.13 h 13.8

9007 9.13 d 17.93 h 12.2

10007 11.39 d 1.00 d 11.3

11681 15.78 d 1.56 d 10.1

Extrapolating the results presented in Table 1, we observe that our current
implementation falls short of a record computation (using a similar computational
power as in [41]). Take, for instance, the large characteristic setting. In the SEA
point-counting record described in [41, Section 5] with log(p) ≈ 16646, the total
time to compute evaluated modular polynomials using Weber invariants for level
ℓ = 11681 is reported to be around 2 CPU hours on a single thread.

For the same level ℓ, but a much smaller characteristic p, our implementation
of ModularEvaluationBigCharacteristic took around 40 CPU hours. The dependency
on log p in the asymptotic complexity comes from the log p term in the height
bound. When taking log(p) ≈ 16646 for ℓ = 11681, one sees that the height bound
is essentially doubled (compared to log p ≈ 30). Thus, we can estimate that the
same computation as Sutherland would have taken around 80 CPU hours with our

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 25

implementation, which is 1 or 2 orders of magnitude slower. Since the computations
were run on different hardware, it is difficult to be more precise than that.

Possible improvements. There are still some places where significant improve-
ments could be made. We identify the following possible improvements to our
software (in order of expected impact):

(1) Currently, the quaternion operations are the bottleneck in ModularEval-
uationBigCharacteristic (taking up to 80% percent of the global run time)
despite being asymptotically negligible compared to interpolation. One
explanation is that the hidden constants in these operations can be quite
big (one quaternion multiplication is already 17 integer multiplications),
and most operations on orders and ideals require to apply operations on
bases of four quaternion elements. Another reason is that our implemen-
tation uses NTL::ZZ which are integers of arbitrary size when the integers
involved in all our quaternion computation can in fact be bounded. Thus,
switching to fixed-sized integers should bring a noticeable improvement.
Moreover, some of the operations on ideals use generic algorithms that
could be improved with a tailored implementation.

(2) Using x-only arithmetic for elliptic curve operations, and in particular
in isogeny computations which are by far the bottleneck in ModularEval-
uationBigLevel due to the high constants involved in the complexity of
computing the isogenies in OrdersTojInvariantSmallSet.

(3) Precomputing the action of each basis element of the endomorphism ring
on the relevant ℓe-torsion bases of the starting curve would also greatly
improve the cost of computing the isogeny kernels in OrdersTojInvariant-
SmallSet and thus positively impact the performances of ModularEvalua-
tionBigLevel.

We are hopeful that the concrete efficiency gains from these improvements could
allow to significantly improve our implementation to the point where ModularEval-
uationBigCharacteristic could match or even beat the performances of the software
from [41].

Despite the better asymptotic scaling, it seems unlikely that the improvements
listed above would be enough for ModularEvaluationBigLevel to beat the other two
algorithms for a realistic value of ℓ. To reach that point, one would likely need a
deeper algorithmic improvement allowing us to decrease the degree of the isogenies
used in SingleOrderTojInvariant.

We remark, however, that all the changes listed above require a significant
implementation effort, and are thus out of scope for this paper.

5. Conclusion

We have introduced several new algorithms to evaluate modular polynomials
using supersingular curves and the Deuring correspondence. These algorithms all
improve the asymptotic time or space complexity of previously known algorithms
for some range of inputs.

We implemented our algorithms in C++, exhibiting the practicality of the
algorithms presented. We further suggest potential improvements that could lead to
important practical speed-ups of our implementation, but they require an extensive
optimization effort and are thus left for future work.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

26 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

References

1. Nesmith Cornett Ankeny, The least quadratic non residue, Annals of Mathematics (1952),
65–72.

2. Sarah Arpin, James Clements, Pierrick Dartois, Jonathan Komada Eriksen, Péter Kutas, and

Benjamin Wesolowski, Finding orientations of supersingular elliptic curves and quaternion
orders, Des. Codes Cryptogr. 92 (2024), no. 11, 3447–3493.

3. Gustavo Banegas, Valerie Gilchrist, and Benjamin Smith, Efficient supersingularity testing

over Fp and CSIDH key validation, Mathematical Cryptology 2 (2022), no. 1, 21–35.
4. Carter Bays and Richard H. Hudson, The segmented sieve of Eratosthenes and primes in

arithmetic progressions to 1012, BIT Numerical Mathematics 17 (1977), no. 2, 121–127.
5. Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith, Faster computation

of isogenies of large prime degree, ANTS (2020).

6. Ian F. Blake, János A Csirik, Michael Rubinstein, and Gadiel Seroussi, On the computation
of modular polynomials for elliptic curves, HP Laboratories Technical Report (1999).

7. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The

user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra
and number theory (London, 1993). https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.

pdf. MR MR1484478

8. Reinier Bröker, Kristin Lauter, and Andrew Sutherland, Modular polynomials via isogeny
volcanoes, Mathematics of Computation 81 (2012), no. 278, 1201–1231.

9. Reinier Martijn Bröker, Constructing elliptic curves of prescribed order, Ph.D. thesis, Leiden

University, 2006.
10. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes, CSIDH:

an efficient post-quantum commutative group action, ASIACRYPT 2018, Springer, 2018,

pp. 395–427.
11. Denis Charles and Kristin Lauter, Computing modular polynomials, LMS Journal of Compu-

tation and Mathematics 8 (2005), 195–204.
12. Leonardo Colò and David Kohel, Orienting supersingular isogeny graphs, Number-Theoretic

Methods in Cryptology 2019 (2019).

13. Maria Corte-Real Santos, Craig Costello, and Sam Frengley, An algorithm for efficient
detection of (N,N)-splittings and its application to the isogeny problem in dimension 2,

PKC 2024. Part III, Lecture Notes in Computer Science, vol. 14603, Springer, 2024, pp. 157–

189. MR 4763489
14. Craig Costello, Michael Meyer, and Michael Naehrig, Sieving for twin smooth integers with

solutions to the Prouhet-Tarry-Escott problem, EUROCRYPT 2021, Lecture Notes in Com-

puter Science, vol. 12696, Springer, 2021, pp. 272–301.
15. Jean Marc Couveignes, Hard homogeneous spaces, IACR Cryptology ePrint Archive, 2006.

16. David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 3 ed., Under-

graduate Texts in Mathematics, Springer, 2007. MR 2290010
17. Christina Delfs and Steven D. Galbraith, Computing isogenies between supersingular elliptic

curves over Fp, Designs, Codes and Cryptography 78 (2016), 425–440.
18. Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison, and Christophe Petit,

Supersingular isogeny graphs and endomorphism rings: Reductions and solutions, EURO-
CRYPT 2018, Springer, 2018, pp. 329–368.

19. Noam D. Elkies et al., Elliptic and modular curves over finite fields and related computational

issues, AMS/IP Studies in Advanced Mathematics 7 (1998), 21–76.

20. Andreas Enge, The complexity of class polynomial computation via floating point approxima-
tions, Mathematics of Computation 78 (2009), no. 266, 1089–1107.

21. Andreas Enge and Andrew V. Sutherland, Class invariants by the CRT method, International
Algorithmic Number Theory Symposium, Springer, 2010, pp. 142–156.

22. Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia Veroni, Deuring for

the people: Supersingular elliptic curves with prescribed endomorphism ring in general char-

acteristic, LuCaNT 2023, 2023.
23. Steven D. Galbraith, Christophe Petit, and Javier Silva, Identification protocols and signature

schemes based on supersingular isogeny problems, ASIACRYPT 2017, 2017.
24. Joseph H. Silverman, The arithmetic of elliptic curves, 2 ed., Graduate Texts in Mathematics,

vol. 106, Springer, 2009.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf

EVAL. OF MODULAR POLY. FROM SUPERSINGULAR ELL. CURVES 27

25. David Kohel, Kristin E. Lauter, Christophe Petit, and Jean-Pierre Tignol, On the quaternion

ℓ-isogeny path problem, 2014.

26. David R. Kohel, Endomorphism rings of elliptic curves over finite fields, Ph.D. thesis, Uni-
versity of California at Berkeley, 1996.

27. Sabrina Kunzweiler and Damien Robert, Computing modular polynomials by deformation,

2024.
28. Serge Lang and Hale Trotter, Frobenius distributions in GL2-extensions: Distribution of

Frobenius automorphisms in GL2-extensions of the rational numbers, Lecture Notes in Math-

ematics, vol. 504, Springer, 2006.
29. Frank Lehmann, Markus Maurer, Volker Müller, and Victor Shoup, Counting the number of

points on elliptic curves over finite fields of characteristic greater than three, International

Algorithmic Number Theory Symposium, Springer, 1994, pp. 60–70.
30. Antonin Leroux, Quaternion algebra and isogeny-based cryptography, Ph.D. thesis, Ecole doc-

torale de l’Institut Polytechnique de Paris, 2022.
31. Antonin Leroux, Computation of Hilbert class polynomials and modular polynomials from

supersingular elliptic curves, 2023.

32. The LMFDB Collaboration, The L-functions and modular forms database, https://www.

lmfdb.org, 2024, [Online; accessed 7 June 2024].

33. François Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini:

aspects algorithmiques, Journal de théorie des nombres de Bordeaux 7 (1995), no. 1, 255–282.
34. Christophe Petit and Spike Smith, An improvement to the quaternion analogue of the

ℓ-isogeny problem, Presentation at MathCrypt (2018).

35. Damien Robert, Some applications of higher dimensional isogenies to elliptic curves (overview
of results), IACR Cryptology ePrint Archive, 2022.

36. Alexander Rostovtsev and Anton Stolbunov, Public-key cryptosystem based on isogenies,

IACR Cryptology ePrint Archive, 2006.
37. Maria Corte-Real Santos, Craig Costello, and Jia Shi, Accelerating the Delfs-Galbraith algo-

rithm with fast subfield root detection, CRYPTO (3), Lecture Notes in Computer Science, vol.
13509, Springer, 2022, pp. 285–314.

38. Victor Shoup et al., NTL: A library for doing number theory, 2001.

39. A. V. Sutherland, classpoly, Software package, version 1.0.3, https://math.mit.edu/~drew/
classpoly.html, accessed 10 January 2025.

40. Andrew Sutherland, Computing Hilbert class polynomials with the Chinese remainder theo-

rem, Mathematics of Computation 80 (2011), no. 273, 501–538.
41. , On the evaluation of modular polynomials, ANTS X, vol. 1, The Open Book Series,

no. 1, Mathematical Sciences Publishers, 2013, pp. 531–555.

42. Andrew V. Sutherland, Identifying supersingular elliptic curves, LMS Journal of Computation
and Mathematics 15 (2012), 317–325.

43. The Sage Developers, SageMath, the Sage Mathematics Software System (Version 10.0),
2024, https://www.sagemath.org.

44. Jacques Vélu, Isogénies entre courbes elliptiques, Comptes-Rendus de l’Académie des Sciences,

Série I 273 (1971), 238–241.
45. John Voight, Quaternion algebras, Graduate Texts in Mathematics, Springer, 2018.
46. Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, Cambridge Univer-

sity Press, New York, 1999.

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

https://www.lmfdb.org
https://www.lmfdb.org
https://math.mit.edu/~drew/classpoly.html
https://math.mit.edu/~drew/classpoly.html

28 M. C.-REAL SANTOS, J. K. ERIKSEN, A. LEROUX, M. MEYER, AND L. PANNY

ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

Email address: maria.corte real santos@ens-lyon.fr

COSIC, KU Leuven, Belgium
Email address: jeriksen@esat.kuleuven.be

DGA-MI, Bruz, France, IRMAR - UMR 6625, Université de Rennes, France
Email address: antonin.leroux@polytechnique.org

University of Regensburg, Germany
Email address: michael@random-oracles.org

Technische Universität München, Germany

Email address: lorenz@yx7.cc

3 Jul 2025 01:11:54 PDT

250131-Leroux Version 3 - Submitted to LuCaNT

	1. Introduction
	2. Background material
	3. Evaluation of modular polynomials
	4. Implementation results
	5. Conclusion
	References

