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Abstract. We explain how to construct a uniformly random cubic integral

domain S of given signature with |disc(S)| ≤ T in expected time Õ(log T ).

1. Introduction

In the past decades, there has been an increasing amount of interest in the
statistical properties of arithmetic objects such as number fields or orders in number
fields.

In [2], Belabas gave an algorithm that computes a list of all cubic number fields

K with |disc(K)| ≤ T in time Õ(T ). One can similarly enumerate all cubic integral

domains S (i.e., orders in cubic number fields) with |disc(S)| ≤ T in time Õ(T ).
The running time is essentially optimal since the number of such fields (or rings) is
≍ T as was shown by Davenport and Heilbronn in [9].

In this paper, we give an algorithm that constructs a uniformly random cubic

integral domain S of given signature with |disc(S)| ≤ T in expected time Õ(log T ).
More precisely:

Theorem 1.1 (cf. Corollary 3.9). There is an algorithm which for given numbers
r ∈ {1, 3} and

T ≥

{
49, r = 3,

23, r = 1

computes in expected time Õ(log T ) a cubic integral domain S of signature r with
|disc(S)| ≤ T and such that all such rings occur with the same probability.

Like [2] and [9], we use Levi’s parametrization of cubic rings by GL2(Z)-orbits
of integral binary cubic forms. (See [11].)

The running time Õ(log T ) of the algorithm referred to in Theorem 1.1 is
essentially optimal since the input has log T bits. (Moreover, the smallest possible
total number of bits in the coefficients of a cubic form corresponding to such a
random ring S is on average ≍ log T .)

The lower bound on T in Theorem 1.1 ensures that there is at least one cubic
integral domain S of signature r with |disc(S)| ≤ T .
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2 FABIAN GUNDLACH

The most straightforward idea (used in [2] and [9]) for enumerating or counting
the orbits with bounded discriminant is to construct a fundamental domain for the
action of GL2(Z) on the space of binary cubic forms and to then enumerate or
count the lattice points in this domain.

The unboundedness of the fundamental domain, i.e., the presence of (long and
narrow) cusps presents an inconvenience when enumerating or counting the lattice
points. To deal with this issue, Bhargava introduced an elegant approach, which
he calls “averaging over fundamental domains” or “thickening and cutting off the
cusps”. Very roughly speaking, he showed that it suffices to be able to estimate the
number of points in linear transforms of a fixed region U of our choice! But it is
relatively easy to count lattice points in a linear transform of a fixed (large) ball, at
least as long as the linear transformation does not deform the ball too much. His
method was for example used to obtain more precise counting results in [7].

In this paper, we adapt his method to the problem of selecting orbits uniformly
at random. Very roughly speaking, it suffices to be able to pick uniformly random
lattice points from linear transforms of a fixed region U of our choice and to have
a good “uniform” upper bound on the number of lattice points in this transform.
We use rejection sampling to ensure that all orbits occur with exactly the same
probability. The quality of the uniform upper bound on the number of lattice
points is important for estimating the running time of the algorithm.

Instead of using Bhargava’s method, one could try to use rejection sampling to
directly pick a point uniformly at random from the fundamental domain described
in [2]. This seems possible, but not easier than the approach described in this
article.

Being able to choose cubic orders of large discriminant uniformly at random
could be advantageous for statistical experiments compared to completely enumer-
ating all cubic orders of bounded discriminant when faced with error terms that
decay slowly compared to the main term. For example, in [13, section 5], Malle
experimentally studied the 2-ranks of class groups of cubic number fields. To this
end, he used the algorithm of Belabas [2] to enumerate all number fields of small
discriminant and computed the class groups of a small sample of these number
fields. As Malle pointed out, his data is not entirely clear since he could (with
Belabas’ algorithm) only consider a relatively small range of discriminants.

An implementation of the algorithm as a standalone program is provided. (See
section 4.)

Our approach can be adapted to other arithmetic objects parameterized by
prehomogeneous vector spaces such as the famous parameterization of ideal classes
of quadratic rings by orbits of binary quadratic forms or the parameterizations
given in [3], [5]. (See section 5.)

Acknowledgements. The author is grateful for helpful conversations with Noam
Elkies, Jürgen Klüners, and Anne-Edgar Wilke. Moreover, the author would like
to thank the anonymous referees for their careful reading and helpful suggestions.

2. Preparations

It is easy to select an integer lattice point in an axis-parallel box with integer
side lengths uniformly at random. This remains true if we apply a triangular linear
transformation to the box:
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Lemma 2.1. Consider an axis-parallel box I = I1×· · ·×In ⊂ Rn, where I1, . . . , In
are half-open intervals, say Ii = [ai, ai + li), of integer lengths l1, . . . , ln ∈ Z. Let
M = (mij)i,j be a lower-triangular unipotent matrix with inverse M−1 = (m′

ij)i,j.
Then, the set Zn ∩ MI has size l1 · · · ln and the following algorithm selects an
element v = (v1, . . . , vn) of Zn ∩MI uniformly at random.

Algorithm 2.1 Finding a random lattice point in a transformed box

1: for i← 1, . . . , n do
2: Pick an element δi of {0, . . . , li − 1} uniformly at random.

3: vi ←
⌈
ai −

∑
j<i m

′
ijvj

⌉
+ δi

4: end for

Proof. By definition, for any v ∈ Rn, we have v ∈MI if and only if∑
j

m′
ijvj ∈ [ai, ai + li) for all i.

The inverse matrix M−1 is also lower-triangular and unipotent, so the sum on the
left-hand side is vi +

∑
j<i m

′
ijvj .

Hence, v ∈MI if and only if

ai −
∑
j<i

m′
ijvj ≤ vi < ai −

∑
j<i

m′
ijvj + li for all i.

The integer solutions vi to these inequalities are

vi =

ai −
∑
j<i

m′
ijvj

+ δi for δi ∈ {0, . . . , li − 1}. □

Our algorithm will work with approximations of random real numbers and we
will show that a given precision suffices with large probability to decide whether
a particular polynomial inequality f(x) > 0 holds. The following lemma will help
with this analysis. (Here, ε will be the precision to which we have computed f(x).)

Lemma 2.2. Let n ≥ 1. For any monic polynomial f ∈ R[X] of degree n and any
ε > 0, the set of x ∈ R with |f(x)| ≤ ε has measure at most 2nε1/n.

Proof. Let r1, . . . , rn be the complex roots of f , so that f(X) = (X −
r1) · · · (X − rn). Any x ∈ R with |f(x)| ≤ ε must have distance at most ε1/n

from one of the roots ri. For any given root ri, the set of x ∈ R with |x− ri| ≤ ε1/n

forms an interval of length at most 2ε1/n. The claim follows by summing over all
roots. □

3. Cubic rings

In this section, we describe an algorithm to construct random cubic rings.
We first remind the reader of some basic definitions. A cubic ring is a (com-

mutative unitary) ring which is isomorphic to Z3 as a Z-module. A cubic integral
domain is a cubic ring which is an integral domain. They are exactly the orders in
cubic number fields. The signature of a cubic integral domain is the number of real
embeddings of its field of fractions.

13 Jun 2025 06:52:58 PDT

250131-Gundlach Version 2 - Submitted to LuCaNT



4 FABIAN GUNDLACH

3.1. Levi’s parameterization. In this subsection, we recall Levi’s parame-
terization of cubic rings by binary cubic forms.

For any ring R, let V(R) denote the set of binary cubic forms f = aX3 +
bX2Y + cXY 2 + dY 3 with a, b, c, d ∈ R. We can naturally identify V(R) with R4

by identifying a cubic form f with its coefficient vector (a, b, c, d).
Define an action of GL2(R) on V(R) by

(Mf)(v) = det(M)−1 · f(MT v) for M ∈ GL2(R) and f ∈ V(R) and v ∈ R2.

The discriminant disc(f) is a homogeneous degree 4 polynomial in the coefficients
a, b, c, d. It is invariant under the action of the group

SL±
2 (R) = {g ∈ GL2(R) : det(g) = ±1}.

In [11], Levi described a bijection

GL2(Z)\V(Z)←→ {cubic rings}

with the following properties:

a) If an orbit GL2(Z)f corresponds to the cubic ring S, then disc(f) =
disc(S) and there is a group isomorphism StabGL2(Z)(f)

∼= Aut(S), where
we denote by Aut(S) the automorphism group of the ring S.

b) The irreducible orbits (orbits consisting of cubic forms f that are irre-
ducible over Q) correspond to the cubic integral domains. If an irreducible
orbit GL2(Z)f corresponds to the cubic integral domain S, then the sig-
nature of S is the number of roots of f in P1(R).

c) Concretely, the cubic ring S corresponding to an orbit GL2(Z)f with
f = aX3+ bX2Y + cXY 2+dY 3 has a Z-basis of the form (1, ω1, ω2) with

ω1 · ω2 = −ad · 1,
ω1 · ω1 = −ac · 1− b · ω1 + a · ω2,

ω2 · ω2 = −bd · 1− d · ω1 + c · ω2.

3.2. The Siegel set and Gauss’ fundamental domain. We next describe
Gauss’ well-known fundamental domain for the action of GL2(Z) on SL±

2 (R).
Any element g of SL±

2 (R) can be written uniquely as a product nak with

n ∈ N(R) =
{(

1
t 1

)
: t ∈ R

}
, a ∈ A(R) =

{(
s−1

s

)
: s ∈ R×

}
, k ∈ O2(R).

In fact, the resulting bijection N(R)×A(R)×O2(R)↔ SL±
2 (R) is a diffeomorphism.

Let dt, d×s, d×k be Haar measures on the groups N(R) ∼= R, A(R) ∼= R×, and
O2(R), respectively. Then, the pushforward of the measure dt · s−2d×s · d×k is a
Haar measure d×g on SL±

2 (R).
Matrices of the form

n(t) :=

(
1
t 1

)
or a(s) :=

(
s−1

s

)
act on V(R) ∼= R4 as

1
3t 1
3t2 2t 1
t3 t2 t 1

 or


s−3

s−1

s
s3

 .
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SAMPLING CUBIC RINGS 5

Let smin :=
√√

3/2. The Siegel set

(3.1) F := {n(t)a(s)k : |t| ≤ 1
2 , s ≥ smin, k ∈ O2(R)} ⊂ SL±

2 (R)

contains the famous fundamental domain

(3.2) F ′ := {n(t)a(s)k : |t| ≤ 1
2 , s ≥ 4

√
1− t2, k ∈ O2(R)} ⊂ SL±

2 (R).

This set F ′ (called the Gauss set) is a fundamental domain for the left action of
GL2(Z) on SL±

2 (R). More precisely, we have∑
h∈GL2(Z)

α(hg) = 4 for all g ∈ SL±
2 (R),

where α(g) = α(t, s) for g = n(t)a(s)k with

(3.3)

α(g) = 0 if g lies outside F ′, i.e., |t| > 1

2
or s <

4
√

1− t2,

α(g) = 1 if g lies in the interior of F ′, i.e., |t| < 1

2
and s >

4
√
1− t2,

α(g) ∈ [0, 1] always.

(For simplicity, we don’t give the formulas for α(g) on the measure 0 boundary
of F ′. The sum is 4 because for any matrix g in F ′, the matrices

(±1
±1

)
g also lie

in F ′.)

3.3. Bhargava’s averaging trick. We now fix a signature r ∈ {1, 3} and let
Vr(R) ⊂ V(R) be the set of squarefree cubic forms with exactly r real roots. Let
Wr(R) ⊂ Vr(R) be the subset consisting of those cubic forms f with |disc(f)| = 1.
The group SL±

2 (R) acts transitively on Wr(R). The set Wr(R) is a 3-dimensional
smooth submanifold of V(R). It follows that the pushforward of d×g along the
map SL±

2 (R) → Wr(R), g 7→ g−1f0, is independent of the choice of f0 ∈ Wr(R).
Denote this pushforward by df . Bhargava’s averaging over fundamental domains /
thickening of cusps trick (see for example [4, section 2.2] or [7, section 5.3]) relies
on the following lemma:

Lemma 3.1. Fix an integrable subset U ⊆ Wr(R). We define the function η on
Wr(R) to be the following average of the indicator functions of linear transforms
of U by elements g of the fundamental domain F ′:

η(f) :=

∫
F ′

χgU (f)d
×g

and let

C :=

∫
Wr(R)

χU (f)df.

We then have for all f ∈ Wr(R):∑
h∈GL2(Z)

η(hf) = 4C.

Proof. We have∑
h∈GL2(Z)

η(hf) =
∑

h∈GL2(Z)

∫
F ′

χgU (hf)d
×g
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6 FABIAN GUNDLACH

=
∑

h∈GL2(Z)

∫
SL±

2 (R)
α(g)χgU (hf)d

×g

=
∑

h∈GL2(Z)

∫
SL±

2 (R)
α(g)χh−1gU (f)d

×g

=
∑

h∈GL2(Z)

∫
SL±

2 (R)
α(hg)χgU (f)d

×g

= 4

∫
SL±

2 (R)
χgU (f)d

×g = 4

∫
SL±

2 (R)
χU (g

−1f)d×g

= 4

∫
Wr(R)

χU (f)df = 4C. □

3.4. A ball and its GL2(R)-transforms. Let ∥ · ∥ be the norm on V(R)
associated to the following positive definite quadratic form q on V(R):

q(aX3 + bX2Y + cXY 2 + dY 3) = 5a2 + b2 + c2 + 5d2 + 2ac+ 2bd.

Lemma 3.2. The quadratic form q is positive definite and invariant under the
action of the orthogonal group O2(R) ⊂ GL2(R).

Proof. One can check that for any f ∈ V(R),∫
{(x,y)∈R2:x2+y2≤1}

f(x, y)2d(x, y) =
π

64
· q(f).

The left-hand side is clearly positive definite and O2(R)-invariant. □

Lemma 3.3. Consider the closed unit ball of radius 1 in V(R). The maximum

values of |a|, |b|, |c|, |d| on this set are 1
2 ,

√
5
2 ,

√
5
2 , 1

2 , respectively.

Proof. To achieve the maximum value of |a|, for instance, the derivatives of
q(f) with respect to b, c, d need to vanish. One easily checks that this occurs exactly
at the two points ± 1

2 (X
3 −XY 2).

The maximum for |b| occurs at ±
√
5
2 (X2Y − 1

5Y
3). The maxima for |c| and |d|

follow by symmetry. □

Consider the open unit ball in V(R):
B = {f ∈ V(R) : ∥f∥ < 1}

By Lemma 3.3, B is contained in the box I := I1 × · · · × I4 given by

I1 := {a ∈ R : |a| ≤ 1
2}, I2 := {b ∈ R : |b| ≤

√
5
2 },

I3 := {c ∈ R : |c| ≤
√
5
2 }, I4 := {d ∈ R : |d| ≤ 1

2}.
Hence, for any λ, s > 0, the set λ · a(s)B is contained in the box λ · a(s)I with side
lengths

l1(λ, s) := λs−3, l2(λ, s) :=
√
5λs−1,

l3(λ, s) :=
√
5λs, l4(λ, s) := λs3.

The box λ · a(s)I is in turn contained in the box I ′(λ, s) = I ′1(λ, s)× · · · × I ′4(λ, s)
with integer side lengths l′i(λ, s), where

I ′i(λ, s) :=
[
− 1

2 l
′
i(λ, s),

1
2 l

′
i(λ, s)

)
with l′i(λ, s) := ⌊1 + li(λ, s)⌋ ∈ Z for i = 1, . . . , 4.

13 Jun 2025 06:52:58 PDT

250131-Gundlach Version 2 - Submitted to LuCaNT



SAMPLING CUBIC RINGS 7

Let smax = 3
√
λ/2. For smin ≤ s ≤ smax, we can bound the side lengths l′i(λ, s)

from above as follows:

(3.4)
l′1(λ, s) ≤ L′

1(λ) · s−3, l′2(λ, s) ≤ L′
2(λ) · s−1,

l′3(λ, s) ≤ L′
3(λ) · s, l′4(λ, s) ≤ L′

4(λ) · s3,
where

L′
1(λ) := s3max + λ, L′

2(λ) := smax +
√
5λ,

L′
3(λ) := s−1

min +
√
5λ, L′

4(λ) := s−3
min + λ.

3.5. The high-level algorithm. Fix a radius R > 0 large enough so that
R ·B ∩Wr(R) ̸= ∅. (For example, you can take R = 7/4 for r = 1 and R = 5/4 for
r = 3.)

We now give an algorithm for computing random irreducible GL2(Z)-orbits.
This first algorithm uses real arithmetic and we later explain how to deal with
precision issues.

Theorem 3.4. Let T ≥ 1 and λ = RT 1/4. Let smin =
√√

3/2 and smax = 3
√
λ/2.

a) The following algorithm either fails or produces an element f of an irre-
ducible GL2(Z)-orbit in Vr(Z) with 0 < |disc(f)| ≤ T .

b) The probability of returning an element of any given such orbit GL2(Z)f
is (for fixed r and T ) proportional to 1/#StabGL2(Z)(f).

c) The probability of success is > p0 for a constant p0 (depending only on r
and R, but not on T ) if there is at least one such orbit GL2(Z)f .

Algorithm 3.1 Finding a random orbit of cubic forms

1: Pick an element t of (− 1
2 ,

1
2 ) uniformly at random.

2: Pick an element s of (smin,∞) at random with probability measure proportional
to s−2d×s.

3: return FAIL unless 4
√
1− t2 < s < smax.

4: return FAIL with probability 1− l′1(λ,s)···l
′
4(λ,s)

L′
1(λ)···L′

4(λ)
.

5: Pick a point f ∈ V(Z) ∩ n(t)I ′(λ, s) uniformly at random using Algorithm 2.1.
6: return FAIL unless f ∈ Vr(R) and 0 < |disc(f)| ≤ T and f is irreducible

over Q and f ∈ R|disc(f)|1/4 · n(t)a(s)B.
7: return f .

Remark 3.5. Repeat the algorithm until it succeeds. According to c), if there is
such an orbit, it will succeed after at most 1/p0 attempts on average.

Remark 3.6. The smallest absolute discriminant of an irreducible orbit with sig-
nature r = 3 is 49. The smallest absolute discriminant of an irreducible orbit with
signature r = 1 is 23. (See for example tables of number fields of degree 3 and
small discriminant, such as the one available at [12].)

Remark 3.7. The following algorithm satisfies a) and c), but every orbit has
the same probability of being returned: Compute a random orbit GL2(Z)f using
Algorithm 3.1. Return this orbit GL2(Z)f with probability #StabGL2(Z)(f)/3 and
return FAIL otherwise. (If f corresponds to the cubic integral domain S with field
of fractions K, the group StabGL2(Z)(f)

∼= Aut(S) ⊆ Aut(K) is either trivial or
cyclic of order 3.)
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8 FABIAN GUNDLACH

Proof of Theorem 3.4. For smin ≤ s ≤ smax, we have

0 ≤ l′1(λ, s) · · · l′4(λ, s)
L′
1(λ) · · ·L′

4(λ)
≤ 1,

according to (3.4), so line 4 of the algorithm makes sense. Claim a) is clear.
Now, consider any irreducible cubic form f ∈ Vr(Z) with 0 < |disc(f)| ≤ T .

Since |t| ≤ 1
2 , we have smin =

√√
3/2 ≤ 4

√
1− t2. The algorithm returns the

cubic form f with probability

P (f) :=

∫ 1/2

−1/2

∫ smax
4√1−t2

p(f, t, s) · s−2d×s dt∫ 1/2

−1/2

∫∞
smin

s−2d×s dt
,

where

p(f, t, s) :=
l′1(λ, s) · · · l′4(λ, s)
L′
1(λ) · · ·L′

4(λ)
·

χn(t)I′(λ,s)(f)

#(V(Z) ∩ n(t)I ′(λ, s))
· χR|disc(f)|1/4·n(t)a(s)B(f).

We have #(V(Z) ∩ n(t)I ′(λ, s)) = l′1(λ, s) · · · l′4(λ, s) by Lemma 2.1.
Since 0 < |disc(f)| ≤ T and λ = RT 1/4, we moreover have

(3.5) R|disc(f)|1/4 · n(t)a(s)B ⊆ λ · n(t)a(s)B ⊆ λ · n(t)a(s)I ⊆ n(t)I ′(λ, s).

Hence,

p(f, t, s) =
χR|disc(f)|1/4·n(t)a(s)B(f)

L′
1(λ) · · ·L′

4(λ)
.

Moreover, since f = aX3+· · ·+dY 3 is irreducible, we have a ̸= 0, so |a| ≥ 1. On the
other hand, if p(f, t, s) ̸= 0, then by (3.5), we have f ∈ λ · n(t)a(s)I, which implies

|a| ≤ 1
2λs

−3. Therefore, if p(f, t, s) ̸= 0, then 1 ≤ 1
2λs

−3, so s ≤ 3
√
λ/2 = smax.

(Bhargava calls this inequality “cutting off the cusp”.) Hence, the upper bound on
s in the integral in the numerator of P (f) can be omitted without changing the
value of the integral:

P (f) =

∫ 1/2

−1/2

∫∞
4√1−t2

p(f, t, s) · s−2d×s dt∫ 1/2

−1/2

∫∞
smin

s−2d×s dt
.

We now multiply both the numerator and the denominator by the finite number∫
O2(R) d

×k. Since B is O2(R)-invariant and since the measure dt · s−2d×s · d×k on

N(R)×A(R)×O2(R) corresponds to the Haar measure d×g on SL±
2 (R), it follows

together with the definitions of F and F ′ in (3.1) and (3.2) that

P (f) =

∫
F ′ p(f, g)d

×g∫
F d×g

with

p(f, g) :=
χR|disc(f)|1/4·gB(f)

L′
1(λ) · · ·L′

4(λ)
.

Note that |disc(|disc(f)|−1/4·f)| = 1 and therefore |disc(f)|−1/4·f ∈ Wr(R) because
disc(f) is a homogeneous polynomial of degree 4 in the coefficients of f . Setting
U := R ·B ∩Wr(R), we can therefore rewrite p(f, g) as

p(f, g) :=
χgU (|disc(f)|−1/4 · f)

L′
1(λ) · · ·L′

4(λ)
,
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SAMPLING CUBIC RINGS 9

so

P (f) =

∫
F ′ χgU (|disc(f)|−1/4 · f) · d×g

L′
1(λ) · · ·L′

4(λ) ·
∫
F d×g

By Lemma 3.1 applied to the element |disc(f)|−1/4 · f of Wr(R), we obtain∑
h∈GL2(Z)

P (hf) = D(λ) :=
C

L′
1(λ) · · ·L′

4(λ)
,

with

C =
4 ·

∫
Wr(R) χU (f

′)df ′∫
F d×g

.

The constant C is positive because U is a nonempty open subset of Wr(R) and∫
F d×g <∞.

On the other hand,∑
h∈GL2(Z)

P (hf) = #StabGL2(Z)(f) ·
∑

f ′∈GL2(Z)f

P (f ′).

We conclude that for any irreducible cubic form f ∈ Vr(Z) with 0 < |disc(f)| ≤ T ,
we have the following probability of returning an element of its GL2(Z)-orbit:∑

f ′∈GL2(Z)f

P (f ′) =
D(λ)

#StabGL2(Z)(f)
.

Since D(λ) is independent of f , this proves b).
For c), we sum over all GL2(Z)-orbits of irreducible cubic forms f ∈ Vr(Z) with

0 < |disc(f)| ≤ T . The number of such orbits is ≍ T for T → ∞. (See [9].) In
particular, it is≫ T as long as there is at least one such orbit. Since StabGL2(Z)(f)
has size at most 3 by Remark 3.7, the sum of 1/#StabGL2(Z)(f) over all orbits is
also ≫ T .

By definition, L′
i(λ)≪ λ for all i, so D(λ)≫ λ−4 ≫ T−1.

It follows that the probability of success is∑
f∈Vr(Z)
irreducible

0<|disc(f)|≤T

P (f) =
∑

[f ]∈GL2(Z)\Vr(Z)
irreducible

0<|disc(f)|≤T

∑
f ′∈GL2(Z)f

P (f ′)

=
∑

[f ]∈GL2(Z)\Vr(Z)
irreducible

0<|disc(f)|≤T

D(λ)

#StabGL2(Z)(f)
≫ T · T−1 = 1.

This proves c). □

3.6. Finite precision real arithmetic. The above algorithm uses real arith-
metic. In practice, we need to work with approximations of those real numbers to
finite precision. Note that we need to be able to decide the inequalities appearing
in the algorithm and to compute ⌊x⌋ or ⌈x⌉ for various real numbers x appearing
in the algorithm. By analyzing the probability with which a given precision suffices
to decide the inequalities and to compute the floor and ceiling values, we show:

Theorem 3.8. Algorithm 3.1 can be implemented on a random access machine

(with a random bit generator) with expected running time Õ(log T ).
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10 FABIAN GUNDLACH

Proof. We use the well-known method of doubling the precision until it suf-
fices. See Algorithm 3.2 below for the concrete implementation.

We leave it to the reader to verify that Algorithm 3.2 is functionally equivalent
to Algorithm 3.1. (Line 5 of Algorithm 3.2 corresponds to line 3 of Algorithm 3.1.
Lines 10 and 12–14 correspond to line 5.)

We show that the probability that the algorithm doesn’t finish within the first

i-th iterations (due to insufficient precision) is O(T vεu) = O(T v2−u2i) for constants

u, v > 0 and that the running time of the i-th iteration is Õ(log T +p) = Õ(log T +
2i), where p := 2i and ε := 2−i. The expected total running time is then

≪
∑
i≥1

min(1, T v2−u2i) · Õ(log T + 2i)

≪
∑

1≤i≤⌊log2(
v
u log2 T )⌋

Õ(log T + 2i) +
∑

i>⌊log2(
v
u log2 T )⌋

T v2−u2i · Õ(log T + 2i)

≪ Õ(log T ) +
∑

j≥⌊ v
u log2 T⌋

T v2−uj · Õ(log T + j)

(∗)
≪ Õ(log T ) +

∑
j′≥0

2−uj′ · Õ(log T + j′)

≪ Õ(log T )

as claimed, where the step marked by (∗) uses the substitution j′ := j−⌊ vu log2 T ⌋,
noting that 2−uj′ ≍ T v2−uj and ⌊ vu log2 T ⌋ ≪ log T .

All real numbers computed in the algorithm are ≪ TO(1). It follows that the
real numbers in the i-th iteration can be computed to absolute precision O(TO(1)ε)

in time Õ(log T + p).
Now, we explain the failure probabilities and running times of the individual

steps of the algorithm:

Line 5: The probability that the inequalities in line 5 cannot be decided from the
given approximation is O(TO(1)ε) since both sides of the inequalities are
known to an absolute precision of O(TO(1)ε) and the probability that the
values are within this distance is O(TO(1)ε) as σ is uniformly distributed
on (0, 1).

Line 8: This works similarly.
Line 7: Being able to compute l′i(λ, s) = ⌊1 + li(λ, s)⌋ from the approximation of

1+li(λ, s) is equivalent to li(λ, s) not lying within a distance of O(TO(1)ε)
from any integer k > 0. The closest integer to li(λ, s) is ≪ T , so we only
need to consider≪ T such integers k. We first bound the probability that
|l4(λ, s)−k| = |λs3−k| ≪ TO(1)ε. As λ ≍ TO(1), this is equivalent to |s3−
λ−1k| ≪ TO(1)ε. By Lemma 2.2, the set of such values s ∈ R has Lebesgue

measure O(TO(1)ε1/3). As s is bounded from below (by
√√

3/2), the

probability measure (proportional to s−2d×s) of this set of values s is
also O(TO(1)ε1/3). Summing over the ≪ T values k, we see that the
probability that the approximation is insufficient for computing l4(λ, s)
is O(TO(1)ε1/3). A similar argument works for l3(λ, s). For l1(λ, s), we
instead use that the inequality |l1(λ, s) − k| = |λs−3 − k| ≪ TO(1)ε is
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SAMPLING CUBIC RINGS 11

equivalent to |s3 − λk−1| ≪ TO(1)ε since 1 ≤ k ≪ T and 1≪ s≪ TO(1).
We then proceed as before. The same argument works for l2(λ, s).

Line 9: Since l′i(λ, s) ≪ TO(1) and ∆i is chosen uniformly at random from (0, 1),
the probability that ∆i · l′i(λ, s) lies within a distance O(TO(1)ε) from an
integer is at most O(TO(1)ε).

Line 10: The number ⌈− 1
2 l

′
1(λ, s)⌉ can be computed with integer arithmetic since

l′1(λ, s) ∈ Z.
Lines 12–14: We compute ⌈x⌉ for various numbers x. Note that in each line,

x is a polynomial in t of degree at most 3 whose leading coefficient has
absolute value ≥ 1. By the same argument as for line 7, the probability
that any of these values cannot be computed is O(TO(1)ε1/3).

Line 16: This involves only integer arithmetic.
Line 17: It suffices to check that disc(f) > 0 if r = 3 and disc(f) < 0 if r = 1.
Line 18: If

q(a(s)−1n(−t)f)−R2|disc(f)|1/2 ≪ TO(1)ε,

then

s6 · (q(a(s)−1n(−t)f)−R2|disc(f)|1/2)≪ TO(1)ε.

The left-hand side is a polynomial in s of degree 12 with leading co-
efficient 5a2 ≥ 5. By Lemma 2.2, the Lebesgue measure of the set of
values s satisfying the inequality is therefore O(TO(1)ε1/12). As 1≪ s≪
TO(1), the probability measure of the corresponding set of values s is also
O(TO(1)ε1/12).

Line 19: Note that a cubic form f ∈ V(Z) is reducible over Q if and only if
it has a rational root. For a ̸= 0, this is equivalent to the polynomial
f(X, 1) ∈ Z[X] of degree 3 having a rational root. The denominator
of such a root must divide a ≪ T . Hence, it suffices to check whether
f(X, 1) has a root in 1

aZ. The real roots of f(X, 1) can be approximated

with accuracy 1
a for example using a binary search and Sturm sequences

in time Õ(log T ). □

Algorithm 3.2 Finding a random orbit of cubic forms (using bit operations)

1: for i← 1, 2, . . . do
2: Let p = 2i and ε = 2−p. In this iteration, we will compute all occurring

real numbers to absolute precision O(TO(1)ε). If the computed precision is
insufficient to decide an occurring inequality or to compute an occurring floor
or ceiling value, we immediately go to the next iteration, starting over with the
next value of i.

3: Pick uniformly random elements τ, σ, π,∆1, . . . ,∆4 of (0, 1) to absolute pre-
cision ε by picking the first p binary digits of each of the numbers, keeping any
digits that were already picked in the previous iteration.

4: Compute t = τ − 1
2 .

5: return FAIL unless
s2min

s2max
< σ <

s2min√
1−t2

.

6: Compute s = smin√
σ
.

7: Compute l′i(λ, s) = ⌊1 + li(λ, s)⌋ for i = 1, . . . , 4.

8: return FAIL if π >
l′1(λ,s)···l

′
4(λ,s)

L′
1(λ)···L′

4(λ)
.

9: Compute δi = ⌊∆i · l′i(λ, s)⌋ for i = 1, . . . , 4.
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12 FABIAN GUNDLACH

10: Compute a = ⌈− 1
2 l

′
1(λ, s)⌉+ δ1.

11: return FAIL unless a ̸= 0.
12: Compute b = ⌈− 1

2 l
′
2(λ, s) + 3ta⌉+ δ2.

13: Compute c = ⌈− 1
2 l

′
3(λ, s)− 3t2a+ 2tb⌉+ δ3.

14: Compute d = ⌈− 1
2 l

′
4(λ, s) + t3a− t2b+ tc⌉+ δ4.

15: Let f = aX3 + bX2Y + cXY 2 + dY 3.
16: return FAIL unless 0 < |disc(f)| ≤ T .
17: return FAIL unless f ∈ Vr(R).
18: return FAIL unless q(a(s)−1n(−t)f) < R2|disc(f)|1/2.
19: return FAIL unless f is irreducible over Q.
20: return f .
21: end for

Corollary 3.9 (cf. Theorem 1.1). There are algorithms which for a given number
r ∈ {1, 3} and T with

T ≥

{
49, r = 3,

23, r = 1

compute in expected time Õ(log T ) a cubic integral domain S of signature r with
|disc(S)| ≤ T and such that

a) the probability of returning any given such ring S is for fixed T propor-
tional to 1/#Aut(S) or

b) all such rings occur with the same probability.

(Here, cubic rings are represented by a corresponding binary cubic form.)

Proof. Claim a) follows immediately from Theorems 3.4 and 3.8 and Re-
marks 3.5 and 3.6. For b), we also use Remark 3.7. □

Remark 3.10. To compute a random cubic number field K with signature r and
|disc(K)| ≤ T (either uniformly or with probability proportional to 1/#Aut(K)),
one can compute cubic integral domains S until finding one which is the ring of
integers of its field of fractions K. There are well-known algorithms for testing
whether S is the ring of integers of its field of fractions, whose running time is
dominated by the factorization of the integer disc(S). (See for example [8, section
6.1].)

In [1], Bach gave an algorithm that generates a uniformly random integer 1 ≤
x ≤ N together with its factorization. The expected running time of his algorithm
is that required for O(logN) primality tests of numbers 1 ≤ p ≤ N . It could be
an interesting problem to efficiently find a uniform random cubic integral domain
together with the factorization of its discriminant.

Remark 3.11. One of the referees raised the question whether it would be possible
to generate cubic rings in narrow discriminant bands. There is indeed an algorithm
similar to the one described above (but slightly more complicated) to generate
a uniformly random cubic integral domain S of signature r with discriminant in

[T, T + T 5/6+ε] in expected time Õε(log T ). We briefly comment on the main
differences:

The ball B of radius 1 centered at the origin should be replaced by a ball B′

centered at a (fixed) point onWr(R) of radius T−1/6+ε. In addition to n(t) and a(s),
we need to first apply a random element k of O2(R) to this ball B′ (as, unlike B, the
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SAMPLING CUBIC RINGS 13

ball B′ is not O2(R)-invariant). In Algorithm 3.1, we pick a random integral point in
n(t)I ′(λ, s), where I ′(λ, s) is a box with integer side lengths containing λ·a(s)B. We
now need to instead pick a random integral point in n(t)I ′′(λ, s, k), where I ′′(λ, s, k)
is a box with integer side lengths containing [T 1/4, (T + T 5/6+ε)1/4] · a(s)kB′. The
volume of this box is at most C · f(T, s) for some constant C > 0 and

f(T, s) :=

{
T 1/3+4ε if s3 ≤ T 1/12+ε,

T 1/4+3εs3 if T 1/12+ε ≤ s3 ≤ s3max.

To make up for the fact that the volume of this box now very much depends on s,
one needs to actually choose s at random with probability measure proportional to
f(T, s)s−2d×s, and then change line 4 of Algorithm 3.1 to make up for the difference
between this upper bound on the volume of the box and its actual volume.

(Even for ε slightly smaller than 0, the resulting algorithm would be correct,
but the probability of success would go to 0 as T → ∞. The lower bound 5/6 for
the exponent of the width of the interval [T, T +T 5/6+ε] corresponds to the second
order term in the count of cubic integral domains [7].)

4. Implementation

An implementation of the algorithm described above is available at https:

//github.com/fagu/random-orbits. It makes use of the FLINT library [14] for
large integer and polynomial arithmetic, and in particular for arbitrary-precision
interval arithmetic [10].

Figure 1 gives the approximate average time it takes to generate one random
cubic integral domain S with signature r and |disc(S)| ≤ 2t, where the probability
of obtaining a given ring S is proportional to 1/#Aut(S). For example, it takes
roughly 10−3 seconds to generate a random ring with r = 3 and |disc(S)| ≤ 2200 and
roughly one second to generate a random ring with r = 3 and |disc(S)| ≤ 2200 000.
(These computations were performed on an Intel Core i7-1355U processor.)
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Figure 1. Average time to generate one random ring
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14 FABIAN GUNDLACH

5. Other parameterizations

The method described above can be adapted to other parameterizations by
prehomogeneous vector spaces.

For example, it is well-known that there is a bijection between the set of
GL2(Z)-orbits of primitive binary quadratic forms and the set of ideal classes of
orders in quadratic number fields. One obtains an algorithm which constructs a
random pair (S, I), where S is a quadratic integral domain with given signature
and |disc(S)| ≤ T and I is an invertible ideal class of S with expected running

time Õ(log T ). The probability the algorithm returns a given such pair (S, I) is

proportional to Reg(S)
ωS

, where Reg(S) is the regulator of S and ωS is the number
of roots of unity in S.

The method can also be used to construct random quartic or quintic rings as
in [3], [5] (with bounds derived as in [4] and [6]). Unfortunately, the constant
factor in the running time crucially depends on the dimension of the prehomoge-
neous vector space. Quintic rings are parameterized by orbits in a 40-dimensional
prehomogeneous vector space and the constant factor becomes impractically large.
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