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Abstract. There has been considerable work around computing the images

of Galois representations coming from elliptic curves. This paper reports on

an algorithm to determine the image of the mod-3 Galois representation as-
sociated to a principally polarized abelian surface over Q. Conjugacy class

distribution of subgroups of GSp(4,F3) is a key ingredient. While this ingredi-

ent is feasible to compute for GSp(4,Fℓ) for any small prime ℓ, the problem of
distinguishing Gassmann-equivalent subgroups is delicate. We accomplish it

for ℓ = 3, using a combination of techniques. The algorithm does not require
the knowledge of the endomorphism ring.

1. Introduction

Given an elliptic curve E/Q, the problem of understanding the Galois action
on its ℓ-torsion points for a prime ℓ is fundamental. This leads to the concrete
question of determining the image of the associated mod-ℓ Galois representation
ρE,ℓ : GQ → GL(2,Fℓ) up to conjugacy in GL(2,Fℓ). There are efficient algorithms
[16] accomplishing this task. Moreover, when E does not have complex multipli-
cation, the works [14, 15] present algorithms to compute the ℓ-adic Galois image,
and Zywina goes further and computes the full adelic Galois image [19].

A natural next step is to tackle this problem for a principally polarized abelian
surface A/Q. For any prime ℓ, let Gℓ = GSp(4,Fℓ). The ℓ-torsion subgroup A[ℓ]
is a 4-dimensional vector space over Fℓ, having a non-degenerate, Galois covariant,
alternating pairing – the Weil pairing. Thus the Galois action gives rise to a mod-ℓ
Galois representation ρ := ρA,ℓ : GQ → Gℓ, such that its composition with the

similitude character χsim : Gℓ → F×
ℓ is equal to the mod-ℓ cyclotomic character

χℓ. Given A/Q and a prime ℓ, it is desirable to determine the mod-ℓ Galois image
im(ρA,ℓ) up to conjugacy inside Gℓ. When A has no extra endomorphisms, Serre’s
open image theorem implies that the set of primes ℓ with im(ρA,ℓ) ̸= Gℓ is finite.
An algorithm to determine a superset of the set of non-surjective primes was given
in [11] and implemented and studied thoroughly in [2]. Building on this, [18] gives
a complete algorithm for computing the rational isogeny class of A.

Definition 1.1. A subgroup H of Gℓ is said to be eligible if the restriction of χsim

to H is surjective, and there exists x ∈ H of order 2 such that χsim(x) = −1.
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2 S. CHIDAMBARAM

Since χℓ = χsim ◦ ρ : GQ → F×
ℓ is surjective, and complex conjugation is an

order 2 element c ∈ GQ with χℓ(c) = −1, the mod-ℓ Galois image im(ρA,ℓ) of a
principally polarized abelian surface over Q can only be an eligible subgroup.

We provide a method to completely accomplish this task when ℓ = 3. It works
for all principally polarized abelian surfaces without any restriction on endomor-
phism type. It consists of a probabilistic Monte Carlo Algorithm 2.3 that determines
the conjugacy class distribution of the image of ρA,3, followed by a deterministic
Algorithm 2.9 that determines im(ρA,3) up to G3-conjugacy. We present the algo-
rithm for Jacobians of genus 2 curves, but it can be extended to include abelian
surfaces presented as the Weil restriction of an elliptic curve over a quadratic field.

Magma [3] code implementing the algorithm is available at the GitHub repos-
itory [9]. The main intrinsic is called mod3Galoisimage, which takes a genus 2
curve as input, and optionally a lower bound for probability ϵ, and two prime
bounds B1, B2 (see Algorithm 2.3). Worked out examples can be found in the file
examples.m. We have used it to compute the mod-3 Galois images for all 66 158
genus 2 curves in the L-functions and Modular Forms Database LMFDB [13]. We
have also computed these images for a bigger dataset consisting of 487 493 genus
2 curves with 5-smooth conductors. Section 2 presents our main algorithms and
Section 3 discusses the challenges in computing mod-ℓ images for ℓ > 3.

Any representation ρ : GQ → G3 with χsim ◦ ρ = χ3 is known to arise as
the mod-3 Galois representation of infinitely many prinicipally polarized abelian
surfaces over Q [4]. This is proven by showing that the corresponding twist of the
Siegel modular variety A2(3), which may not be rational over Q [6], is nevertheless
unirational overQ via a map of degree at most 6. A consequence of this result is that
any eligible subgroup of G3 arises as the mod-3 Galois image of some principally
polarized abelian surface over Q. Up to conjugacy G3 has 492 subgroups; 330 of
them are not contained in Sp(4,F3) and 280 of them are eligible subgroups. This
leads to the following question.

Question 1.2. Can we explicitly realize each of the 280 eligible subgroups of G3

as the mod-3 Galois image of some principally polarized abelian surface over Q?

Our computations on the LMFDB curves and the 5-smooth curves have already
yielded 227 subgroups of G3 as mod-3 Galois images. The work [5] outlines a
method of explicitly constructing a genus 2 curve starting from the mod-3 Galois
representation ρ. Out of the remaining 53 subgroups, it seems feasible to use this
approach for the 26 subgroups of order less than 48. Section 4 discusses progress
towards this question.

Notation: Throughout this article, we use the LMFDB labeling scheme [1]
for referring to subgroups of Gℓ. The label is a string ℓ.i.n, where i is the index
in Gℓ, and n is a counter giving a canonical ordering of all index-i subgroups of Gℓ.

2. Computing the mod-3 Galois image

Suppose A is given as the Jacobian of a genus 2 curve C/Q : y2 = f(x) with
deg(f) = 5 or 6. Let S denote the set of primes of bad reduction for A. We want
to determine the image of ρA,3 up to conjugacy in G3. This group is abstractly
isomorphic to the Galois group of the 3-torsion field. Although the latter can be
computed from a 3-division polynomial, it is not enough to determine im(ρA,3) up
to G3-conjugacy. The difficulty comes from the presence of outer automorphisms.
Remark 2.1 discusses this issue in the simpler case ℓ = 2.
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Remark 2.1. For ℓ = 2, since the 2-torsion field of A is the splitting field of f(x),
the mod-2 Galois image is abstractly isomorphic to the Galois group Gal(f) ⊆
S6 ≃ G2. But the identification S6 ≃ G2 must be chosen carefully since S6 has an
outer automorphism. This is done, for instance, by noting that pairs of Weierstrass
points on C correspond to points in A[2], and matching the two conjugacy classes
of order-48 subgroups correctly: the subgroup of S6 that has orbits of size 2 and 4
must match with the subgroup of G2 having a fixed point, while the other transitive
subgroup of S6 must match with the one having no fixed points.

2.1. Computing the Gassmann-equivalence class. When computing any
Galois group, the Chebotarev density theorem is a very useful tool. Suppose the
Galois group is a subgroup of a group G. Then one computes the conjugacy class
of Frobp for all unramified primes p ≤ X. This sampled frequency is compared
against the conjugacy class distributions of subgroups of G, and ideally this pins
down the Galois group with high certainty, since Chebotarev guarantees that the
distribution of Frobp for p ≤ X matches that of the Galois group as X → ∞.

This general approach yields the probabilistic method of Algorithm 2.3, wherein
we prune out subgroups whose conjugacy class distributions are very unlikely to
yield the sampled Frobenius distribution. Since the computation of the Frobenius
conjugacy class in G3 is intensive, we do it only when needed. First we focus on two
essential features of a conjugacy class in G3: the characteristic polynomial, and the
dimension of the 1-eigenspace, which are more efficiently computable. This data is
called the signature of the conjugacy class.

Definition 2.2. For a prime p of good reduction for A, the Frobenius signature of
A at p is defined to be the tuple ⟨Lp(A, t) (mod 3),dimFp A[3](Fp)⟩, where Lp(A, t)
is the Euler factor of A at p. Note that det(I − ρA,3(Frobp)t) ≡ Lp(A, t) (mod 3).

Although Algorithm 2.3 goes far, it cannot completely determine the mod-3
Galois image because of the existence of non-conjugate but Gassmann-equivalent
[17, Def 2.8] subgroups, i.e., subgroups giving rise to the same conjugacy class
distribution. The 280 eligible subgroups of G3 give rise to 230 distinct conjugacy
class distributions. These are 38 pairs, 3 triples and 2 quadruples of Gassmann-
equivalent subgroups.

Algorithm 2.3. Input:

• a genus 2 curve C over Q such that A = Jac(C)
• a positive real number ϵ close to 0; two integers B1 ≥ B2 ≥ 1.
• a pre-computed list L of the 280 eligible subgroups of G3 along with their
signature distributions and conjugacy class distributions.

Output: the Gassmann-equivalence class of subgroups of G3 containing im(ρA,3).

Step 1 For each prime p ̸∈ S ∪ {3}, p ≤ B1, compute the Frobenius signature.
Step 2 Using the pre-computed list of signature distributions, apply Bayes’ rule

to calculate for each H ∈ L the probablity that im(ρA,3) = H given the
sampled Frobenius sign distribution from Step 1.

Step 3 Remove those H ∈ L whose probability is smaller than ϵ. If the remaining
subgroups form a unique Gassmann-equivalence class, return it.

Step 4 Otherwise, for each prime p ̸∈ S ∪ {3}, p ≤ B2, compute the conjugacy
class of ρA,3(Frobp) ∈ G3 by computing A[3](Fp) as a subgroup of A(Fpk)
for some k ≥ 1, and constructing a symplectic basis of A[3].
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Step 5 Using the pre-computed list of conjugacy class distributions, apply Bayes’
rule to calculate for each remaining H ∈ L the probablity that im(ρA,3) =
H given the sampled Frobenius conjugacy class distribution from Step 4.

Proposition 2.4. For any 0 < ϵ < 1
4 , there exists B such that Algorithm 2.3 with

Bi ≥ B returns the Gassmann-equivalence class containing im(ρA,3).

Proof. By the Chebotarev density theorem, the sampled Frobenius distri-
bution converges to the conjugacy class distribution of the Gassmann-equivalence
class containing im(ρA,3), as B2 → ∞. The proposition follows immediately. □

Example 2.5. The largest subgroup of G3 that fails the local-global principle for
stabilizing a maximal isotropic subspace of F4

3 is H = 3.1080.4, i.e., every element
of H stabilizes some 2-dimensional isotropic plane, but H does not. Consider the
genus 2 curve with LMFDB label 25600.f.512000.1. Algorithm 2.3 returns that the
mod-3 Galois images for this curve is H. So the Jacobian of C presents an example
where the local-global principle for the existence of isogenies fails.

Example 2.6. Let H denote the stabilizer in G3 of an isotropic plane in F4
3. It is

the group 3.40.2, and it has three index-2 subgroups: H ∩ Sp(4,F3) and the two
eligible subgroups 3.80.3 and 3.80.4. We note that 3.80.3 is the largest subgroup
of G3 that does not occur as the mod-3 Galois image for any genus 2 curve in the
LMFDB dataset. Consider the moduli space X/Q parametrizing (3, 3)-isogenies of
principally polarized abelian surfaces (it is the analog of the modular curve X0(3)).
In other words, X is the moduli space of abelian surfaces with im(ρA,3) ⊆ 3.40.2.
The three index-2 subgroups correspond to three degree-2 covers. If Q(X) denotes
the function field of X, the function fields of the three covers are respectively
Q(

√
−3)(X),Q(X)(

√
−3f) and Q(X)(

√
f) for some f ∈ Q(X). Using a birational

model of X and the curves in LMFDB whose mod-3 Galois image is 3.80.4, Noam
Elkies guessed the function f . Then a search for rational points on X where −3f
is a square, yields the genus 2 curve C : y2 = −27x6 + 54x5 − 693x4 + 1278x3 −
543x2 − 60x− 16 with conductor 32 74 13 432. As expected, Algorithm 2.3 verifies
that its mod-3 Galois image is indeed 3.80.3.

Remark 2.7. The output of Algorithm 2.3 is rigorous only when it is the whole
group G3. An effective Chebotarev density theorem [12] can be used to make Al-
gorithm 2.3 completely rigorous, if we allow ourselves to use a very large number of
primes. Let δ be the minimum of the L∞ distance between any two conjugacy class
distributions of eligible subgroups of G3. Bounding the error term in Chebotarev
density by δ/2 pins down a unique Gassmann-equivalence class. By [12, Thm 1.1],
which assumes GRH, this can be accomplished if we sample Ocond(C)(δ

−2) primes.

2.2. Distinguishing Gassmann-equivalent subgroups. We begin by not-
ing a canonical example of non-conjugate Gassmann-equivalent subgroups of Gℓ.

Example 2.8. Let J2 =

[
1

−1

]
, J2 =

[
1

1

]
. Suppose J ′

2 =

[
J2

−J2

]
represents the standard alternating form on the column space F4

ℓ , that is preserved
by Gℓ up to scalars. Let H1 ⊆ Gℓ be the stabilizer of a vector in F4

ℓ , so H1 =
1 B c

A D
x

 : D = AJ2B
t,det(A) = x

. Let H2 ⊆ Gℓ be the transpose of H1.
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Then H1 and H2 are clearly non-conjugate, but they are Gassmann-equivalent [17,
Prop 2.6] since transposing gives a Gℓ-conjugacy preserving bijection H1 ↔ H2.

In [16], while computing the mod-ℓ Galois image im(ρE,ℓ) of an elliptic curve
E/Q, Sutherland tackles this problem of distinguishing Gassmann-equivalent sub-
groups of GL(2,Fℓ) by computing the degree of the minimal number field over which

E acquires ℓ-torsion points. For example, if im(ρE,ℓ) =

[
1 ∗
0 ∗

]
, then E(Q) must

have an ℓ-torsion point, whereas if im(ρE,ℓ) =

[
∗ ∗
0 1

]
, then the minimal degree of

a number field K such that E(K) has an ℓ-torsion point is ℓ− 1.
We develop this idea further in Algorithm 2.9 to distinguish any two Gassmann-

equivalent subgroups of G3 that are not conjugate in GL(4,F3). There are exactly
5 Gassmann-equivalence classes of size 2, listed in Table 1, containing GL(4,F3)-
conjugate subgroups. These are indistinguishable by the methods described above.
Since these groups are small (order ≤ 32), we distinguish them in Algorithm 2.9 by
literally constructing a symplectic basis of A[3] over the 3-torsion field K.

Table 1. Non-conjugate Gassmann-equivalent subgroups of
GSp(4,F3) that are conjugate in GL(4,F3).

|H| Label Entries in generators read horizontally
32 3.3240.6 [ 0, 0, 1, 2, 2, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 0 ]

[ 2, 1, 0, 1, 2, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 0 ]
[ 1, 1, 2, 1, 2, 0, 0, 2, 1, 2, 0, 2, 2, 1, 1, 2 ]

32 3.3240.7 [ 2, 0, 0, 0, 1, 0, 2, 0, 2, 2, 0, 0, 1, 2, 2, 1 ]
[ 1, 0, 2, 1, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, 2 ]
[ 2, 1, 2, 0, 2, 2, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1 ]

16 3.6480.16 [ 2, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1 ]
[ 0, 2, 1, 0, 1, 2, 1, 1, 2, 0, 0, 1, 1, 2, 2, 2 ]

16 3.6480.3 [ 0, 2, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0 ]
[ 2, 2, 1, 0, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 0, 1 ]

16 3.6480.13 [ 1, 2, 1, 0, 1, 1, 0, 1, 2, 2, 2, 1, 1, 2, 2, 2 ]
[ 1, 0, 2, 1, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, 2 ]

16 3.6480.17 [ 0, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 0, 1, 1, 0 ]
[ 2, 0, 2, 1, 2, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 1 ]

16 3.6480.14 [ 2, 1, 0, 1, 0, 2, 0, 0, 2, 2, 1, 2, 0, 2, 0, 1 ]
[ 2, 0, 1, 2, 2, 1, 2, 1, 0, 0, 2, 0, 0, 0, 1, 1 ]
[ 1, 1, 1, 0, 2, 2, 0, 2, 2, 0, 2, 1, 0, 1, 2, 1 ]

16 3.6480.15 [ 1, 2, 0, 2, 0, 1, 0, 0, 1, 1, 2, 1, 0, 1, 0, 2 ]
[ 2, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 1, 2, 2, 1 ]
[ 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 2, 1 ]

8 3.12960.5 [ 2, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1 ]
[ 1, 0, 2, 1, 2, 0, 0, 2, 1, 1, 0, 0, 2, 1, 1, 2 ]

8 3.12960.11 [ 2, 2, 1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 2, 2, 1 ]
[ 0, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 0, 2, 2, 0 ]

We set up some notation before describing the algorithm. Let K = A/{±}
denote the Kummer surface associated to the abelian surface A, and let X denote
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the image of A[3] under the quotient map. Explicit biquadratic forms defining
addition on K, and the doubling formula, have been computed in [8, Thm 3.4.1].
Using these, equations for the 3-torsion locus X ⊂ K can be computed, as in [7], by
writing 2P = −P in terms of the coordinates of an arbitrary point P ∈ K. Although
one can obtain a 3-division polynomial by taking resultants of these equations
succesively, knowing a general 3-division polynomial at the outset is very useful
to make Step 1 and Step 3 of Algorithm 2.9 faster. Such a general 3-division
polynomial was given to us by David Roberts.

Algorithm 2.9. Input:

• a genus 2 curve C over Q such that A = Jac(C)
• a Gassmann-equivalence class L of subgroups of G3 containing im(ρA,3).

Output: the image of ρA,3 up to conjugacy in G3.

Step 1 If L is a class given in Table 1, compute the three-torsion fieldK = Q(A[3])
and its automorphism group Gal(K|Q). Find all 40 geometric points on
the three-torsion locus X , i.e., compute X (Q) = X (K), and lift to find a
full basis of A[3]. Fix a symplectic basis by working in some residue field.
Compute matrices with respect to this basis that correspond to the action
of the generators of Gal(K|Q), thus determining im(ρ).

Step 2 Otherwise, for eachH ∈ L, compute dim(F4
3)

H0 whereH0 = H∩Sp(4,F3).
Also compute max

[H:H1]=d
dim(F4

3)
H1 for each d ∈ D = {1, 2, 3, 6, 8, 12}.

Step 3 Compute X (Q(ζ3)), and the points in X whose degree belongs to the setD.
Lift them to 3-torsion points on A, and thus compute dimF3

(A[3](Q(ζ3))),
and max

[K:Q]=d
dimF3

(A[3](K)) for each d ∈ D.

Step 4 If there is a unique group H ∈ L, whose data computed in Step 2 matches
the data computed in Step 3, return it.

Theorem 2.10. Given any genus 2 curve C/Q with A = Jac(C), and the
Gassmann-equivalence class L containing im(ρA,3), Algorithm 2.9 returns im(ρA,3).

Proof. Suppose L is a Gassmann-equivalence class of size > 1 not listed in
Table 1. If L appears in Tables 2 or 3, the corresponding set of indices d shown in
the table distinguish all subgroups appearing in L. Otherwise, the subgroups in L
are distinguished by the dimension of their fixed spaces. □

Example 2.11. Let H denote the stabilizer in G3 of an line in F4
3. It is the

group 3.40.1, and two of its index-2 subgroups {3.80.1, 3.80.2} form a Gassmann-
equivalence class. While 3.80.1 is the stabilizer of a point, 3.80.2 acts trivially on
a 1-dimensional quotient of F4

3. Consider the genus 2 curve C with LMFDB label
277.a.277.2. Running Algorithm 2.3 on C returns the correct Gassmann-equivalence
class. Further running Algorithm 2.9 returns that the mod-3 Galois image is the
group 3.80.2. So the local-global principle for the existence of a 3-torsion point fails
for Jac(C). This is consistent with Mordell-Weil group Jac(C)(Q) ≃ Z/5.

3. Challenges in computing mod-ℓ Galois image for ℓ > 3

For any prime ℓ > 3, Algorithm 2.3 still works in principle to determine the
Gassmann-equivalence class of im(ρA,ℓ). The precomputation of all eligible sub-
groups of Gℓ becomes hard for large ℓ, but for practical purposes, it is enough to
compute only those subgroups whose index is less than a well-chosen bound.
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Table 2. Gassmann-equivalent subgroups distinguished by
dim(F4

3)
H0 and max

[H:H1]=d
dim(F4

3)
H1 for d ≤ 3.

|H| Label Entries in generators read horizontally H0 d=1 2 3
324 3.320.1 [ 2, 2, 2, 0, 2, 1, 1, 0, 2, 0, 1, 2, 2, 0, 2, 2 ]

[ 1, 0, 2, 0, 2, 1, 1, 2, 2, 2, 0, 1, 2, 1, 0, 1 ]
1 1 1 1

3.320.2 [ 1, 1, 1, 2, 0, 0, 2, 1, 2, 0, 0, 1, 1, 1, 2, 2 ]
[ 0, 1, 0, 1, 2, 1, 2, 1, 1, 2, 1, 0, 0, 2, 2, 1 ]

1 0 1 0

3.320.5 [ 1, 2, 1, 1, 0, 1, 2, 0, 0, 0, 2, 2, 0, 0, 0, 2 ]
[ 2, 2, 0, 0, 2, 1, 2, 1, 0, 0, 1, 2, 1, 1, 2, 2 ]

0 0 1 1

3.320.6 [ 1, 2, 1, 1, 1, 0, 2, 0, 0, 2, 1, 0, 2, 2, 1, 1 ]
[ 1, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1 ]

0 0 1 0

162 3.640.1 [ 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 0, 0, 1, 2, 0, 2 ]
[ 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 2, 0, 2, 0, 2, 0 ]

1 1 1 2

3.640.2 [ 0, 1, 0, 1, 0, 1, 0, 2, 2, 2, 2, 1, 1, 1, 2, 1 ]
[ 1, 1, 1, 0, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 0, 1 ]
[ 2, 2, 2, 1, 0, 0, 1, 2, 0, 1, 0, 1, 0, 0, 0, 1 ]

1 1 1 1

3.640.3 [ 2, 2, 0, 2, 1, 1, 1, 0, 1, 2, 1, 0, 1, 2, 0, 2 ]
[ 2, 2, 0, 2, 0, 2, 1, 2, 1, 2, 1, 0, 2, 0, 2, 2 ]

1 0 1 0

3.640.4 [ 0, 0, 2, 2, 0, 0, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2 ]
[ 2, 1, 2, 1, 2, 2, 0, 0, 0, 1, 2, 0, 1, 1, 2, 1 ]
[ 2, 1, 2, 2, 2, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 2 ]

1 0 1 1

36 3.2880.13 [ 0, 0, 1, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 0 ]
[ 2, 0, 0, 0, 0, 2, 0, 0, 1, 1, 1, 0, 2, 1, 0, 1 ]
[ 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2 ]

0 0 2 0

3.2880.17 [ 1, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 0, 2, 0 ]
[ 0, 1, 0, 2, 1, 2, 2, 0, 0, 2, 0, 2, 2, 0, 2, 2 ]
[ 2, 2, 0, 2, 2, 1, 2, 0, 0, 1, 2, 1, 1, 0, 1, 1 ]

0 0 1 0

18 3.5760.2 [ 1, 1, 1, 2, 0, 0, 2, 1, 0, 2, 0, 2, 0, 0, 0, 2 ]
[ 2, 1, 2, 0, 0, 0, 2, 2, 1, 0, 2, 2, 2, 1, 0, 0 ]

2 1 2 2

3.5760.5 [ 2, 1, 2, 0, 0, 0, 2, 2, 1, 0, 2, 2, 2, 1, 0, 0 ]
[ 1, 2, 1, 2, 1, 0, 2, 1, 0, 1, 0, 1, 2, 0, 2, 2 ]

2 1 2 1

12 3.8640.2 [ 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 0, 2, 1, 0, 2 ]
[ 1, 2, 2, 0, 2, 2, 1, 2, 2, 1, 2, 1, 0, 2, 1, 0 ]

0 0 2 0

3.8640.4 [ 0, 2, 1, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 1, 2, 0 ]
[ 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1 ]

0 0 1 0

12 3.8640.12 [ 1, 1, 0, 0, 0, 2, 0, 0, 2, 0, 1, 2, 1, 2, 0, 2 ]
[ 2, 0, 1, 1, 0, 2, 1, 1, 2, 1, 1, 0, 1, 2, 0, 1 ]

0 0 2 0

3.8640.13 [ 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 0, 2 ]
[ 2, 0, 2, 1, 2, 1, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1 ]

0 0 1 0

But the problem of distinguishing Gassmann-equivalent subgroups gets consid-
erably harder. Firstly, there are many more Gassmann-equivalent subgroups. For
example, G5 has 1125 eligible subgroups up to conjugacy, but they give rise to only
773 distinct conjugacy class distributions. Hence many more Gassmann-equivalent
subgroups show up than for ℓ = 3. Secondly, computing information about A[ℓ]
as in Step 3 of Algorithm 2.9 is a lot more computationally challenging. For eg.,
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Table 3. Gassmann-equivalent subgroups distinguished by
max

[H:H1]=d
dim(F4

3)
H1 for d = 6, 8, 12.

|H| Label Entries in generators read horizontally d=6 8 12
432 3.240.6 [ 0, 0, 0, 2, 0, 1, 2, 2, 0, 0, 2, 0, 2, 0, 1, 0 ]

[ 1, 0, 0, 2, 0, 2, 1, 0, 0, 0, 2, 0, 2, 0, 0, 2 ]
0 1 0

3.240.7 [ 2, 0, 1, 1, 0, 1, 1, 2, 0, 0, 2, 0, 2, 0, 1, 2 ]
[ 0, 0, 2, 2, 1, 2, 0, 2, 0, 0, 1, 0, 2, 0, 2, 0 ]

0 1 1

324 3.320.3 [ 1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 1, 2, 2, 0, 2, 0 ]
[ 2, 0, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0 ]

2 - 2

3.320.4 [ 1, 2, 2, 1, 2, 1, 2, 0, 2, 0, 0, 2, 2, 0, 2, 2 ]
[ 1, 1, 1, 2, 2, 1, 2, 0, 2, 0, 0, 1, 2, 1, 0, 1 ]
[ 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1 ]

1 - 2

48 3.2160.9 [ 1, 1, 1, 1, 0, 2, 1, 1, 0, 0, 1, 2, 0, 0, 0, 2 ]
[ 0, 2, 0, 1, 2, 1, 1, 0, 2, 0, 1, 0, 2, 1, 0, 2 ]

1 1 2

3.2160.10 [ 0, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 2, 2, 1, 0, 2 ]
[ 2, 2, 2, 0, 0, 2, 0, 2, 1, 0, 0, 0, 2, 0, 2, 0 ]

1 2 2

computing equations for the ℓ-torsion locus on the Kummer surface seems hard al-
ready for ℓ = 7. Thirdly, while most Gassmann-equivalent subgroups of Gℓ are not
conjugate inside GL(4,Fℓ), there are also fairly big subgroups that are. Concretely,
there is a pair of subgroups {5.48750.5, 5.48750.6} of G5 of order 768, which are
Gassmann-equivalent and also conjugate in GL(4,F5).

We believe that a lot of these difficulties can be overcome by taking endomor-
phism ring information into account. This data can be easily computed thanks to
[10]. On the one hand, endomorphisms constrain Galois action, thus there are fewer
candidates for the Galois image. On the other hand, for a given endomorphism ring,
having an unusually small Galois image is rare. A forthcoming work of the author
will fully address the typical case, i.e., when there are no extra endomorphisms.

4. Towards explicitly realizing all mod-3 Galois images

As mentioned in the introduction, [5] yields in theory a way to explicitly realize
any of the 280 eligible subgroups H of G3 as the Galois image of the Jacobian of a
genus 2 curve over Q. Given such a subgroup, one first obtains a number field K
properly solving the embedding problem

(4.1)

GQ

0 H ∩ Sp(4,F3) H Z/2 0

χ3
ρ

i.e., ρ is surjective and K is the fixed field of ker(ρ). Since G3 is a split extension
of Z/2 by Sp(4,F3), this embedding problem is always solvable and such a number
field K exists. Then the recipe in [5] lets us construct the corresponding twisted
Burkhardt quartic threefold B, and associate to the rational points on B certain
genus 2 curves. Finally, we make a suitable quadratic twist to ensure that the
mod-3 Galois image of the Jacobian is exactly equal to H. Here is an illustrative
example.
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Example 4.1. Consider the subgroup H with label 3.12960.9 which is abstractly
isomorphic to (Z/2)3. We take K = Q(

√
−3,

√
−1,

√
2). We call the intrinsic

BurkhardtModel with input containingK and an isomorphism of ρ : Gal(K|Q) ≃ H
to find a model for the corresponding twisted Burkhardt quartic B. We then
follow the recipe in [5] with a randomly chosen rational point on B. This produces
the quadratic twist by 2 of the curve C : y2 = x(x4 − 6840x2 + 456976), and
indeed Algorithm 2.3 verifies that its mod-3 Galois image is H. The Jacobian
of C is isogenous to the product of the elliptic curve 14.a3 and its twist by −1.
It has conductor 2572 = 1568, mod-3 Galois image 3.25920.3 and 3-torsion field
Q(

√
−1,

√
3). The curve C is not currently on the LMFDB.
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