
Contemporary Mathematics

On pairs of primes with small order reciprocity

Craig Costello and Gaurish Korpal

Abstract. We give a sieving algorithm for finding pairs of primes with small
multiplicative orders modulo each other. This problem is a necessary condi-

tion for obtaining constructions of 2-cycles of pairing-friendly curves, which
have found use in cryptographic applications. Our database of examples sug-

gests that, except for a well-known infinite family of such primes, instances

become increasingly rare as the size of the primes increase. This leads to some
interesting open questions for which we hope our database prompts further

investigation.

1. The problem

This paper is concerned with finding pairs of primes that satisfy certain in-
stances of the following definition.

Definition 1.1 (Primes with (k, k′)-order reciprocity). The prime numbers p
and q have (k, k′)-order reciprocity if ordq(p) = k and ordp(q) = k′. That is, k

and k′ are the smallest natural numbers such that pk ≡ 1 (mod q) and qk
′ ≡ 1

(mod p).

Herein we are interested in instances of Definition 1.1 where p and q are large
and where k and k′ are small. To be more concrete about what we mean by
large and small, we must first discuss why this problem finds practical relevance
in cryptography. In 2014, Ben-Sasson, Chiesa, Tromer, and Virza [BSCTV14]
showed that certain types of pairing-based zero-knowledge proof systems can be
instantiated in a very efficient and scalable way if we have a 2-cycle of pairing-
friendly elliptic curves. Let p and q be large primes. We say that the elliptic
curves E/Fp and E′/Fq are a 2-cycle if and only if #E(Fp) = q and #E′(Fq) = p.
Furthermore, we say that E/Fp is pairing-friendly if its embedding degree k =
ordq(p) is small enough for the order-q Weil and/or Tate pairings to be efficiently
computable. Similarly, we say that E′/Fq is pairing-friendly p if its embedding
degree k′ = ordp(q) is suitably small. These embedding degrees need to be small
enough that the pairings in F×

pk and F×
qk′ can be computed efficiently. In practice,

and indeed in this paper, we follow the standard rule-of-thumb and impose that
both k and k′ are no larger than 50 [FST10].

2020 Mathematics Subject Classification. Primary 11A07, 11T22, 11T71, 11A15, 11Y16.
Part of this work was done while Gaurish was an intern at Microsoft Research.

1

2 Jul 2025 19:03:46 PDT

250130-Costello Version 3 - Submitted to LuCaNT

2 CRAIG COSTELLO AND GAURISH KORPAL

On the other hand, for the associated proof system to be cryptographically
secure, the elliptic curve discrete logarithm problems (ECDLPs) and the finite field
discrete logarithm problems (DLPs) all need to be computationally infeasible. In
practice, this means p and q must both be at least 2160 for ECDLP security, and k
and k′ must be large enough for the fields Fpk and Fqk′ to offer comparable DLP
security.

1.1. A necessary condition for 2-cycles. The only known instances of 2-
cycles of ordinary pairing-friendly elliptic curves arise from the Miyaji-Nakabayashi-
Takano (MNT) family [MNT01], which is parameterised as

p = x2 − x+ 1 and q = x2 + 1,(1.1)

from which it follows that (k, k′) = (ordq(p), ordp(q)) are always such that k | 6
and k′ | 4.

It turns out that the MNT 2-cycle is suboptimal in practical applications,
because the embedding degrees are too small to optimally balance the ECDLP and
DLP securities. With (k, k′) = (4, 6), meeting the requisite DLP security requires
that Fp4 and Fq6 are at least a few thousand bits [SG18, Table 1], which forces
the sizes of p and q to be orders of magnitude larger than they would be in the
optimal scenario where k and k′ are larger. The subsequent hunt for 2-cycles of
ordinary elliptic curves with larger embedding degrees has only produced negative
results [CCW19, BMUS23]. For example, Chiesa, Chua and Weidner [CCW19]
proved that 2-cycles of ordinary elliptic curves E/Fp and E′/Fq with (k, k′) ∈
{(5, 10), (8, 8), (12, 12)} do not exist. In what follows, we use a toy example to
motivate the work in this paper by showing the existence of a 2-cycle with (k, k′) =
(12, 12) under relaxed conditions, in light of recent work in [CCN24].

Example 1.2. The prime pair (p, q) = (620461, 15493) is such that (k, k′) =
(ordq(p), ordp(q)) = (12, 12). Proposition 3 of [CCW19] rules out the existence of
a 2-cycle with q = #E(Fp) and p = #E′(Fq). Indeed, the Hasse bound for E′/Fq

in this instance is 15246 ≤ #E′(Fq) ≤ 15742, ruling out p = #E′. If we relax the
2-cycle condition to allow cofactors as in [CCW19, §7] and to allow extension fields
as in [CCN24], we might instead seek to find two elliptic curves E/Fp and E′/Fq2

such that #E(Fp) = hq and #E′(Fq2) = h′p. While such an E does exist (with
h = 40), there is no multiple of p inside the Hasse interval for E′/Fq2 ; h

′ = 386 is
too small for h′p to be inside the interval, while h′ = 387 is too large. If, however,
we instead consider a genus 2 curve C/Fq, close examination of the possible group
orders of its Jacobian (see [GKS11, §2.1]) reveals that h′ ∈ {374, . . . , 399} are
all plausible cofactors. Indeed, we readily find one such example as C/Fq : y

2 =
x6 + 6611x5 + 13858x4 + 6818x3 + 5652x2 + 10423x + 1795, which is such that
#JC(Fq) = 383 ·p, forming a 2-cycle with E/Fp : y

2 = x3+30984x+426966, which
is such that #E(Fp) = 40 · q. Both JC and E are ordinary and have embedding
degree 12.

The above example shows that it is possible to construct ordinary 2-cycles
under relaxed conditions, even when their existence has been ruled out in the case
where both curves are elliptic curves of prime order, so long as we have primes with
(k, k′)-order reciprocity1. In our view, the existence of large primes with small order

1The notion and terminology order reciprocity is found in a 2019 post by Lee [Lee19].

2 Jul 2025 19:03:46 PDT

250130-Costello Version 3 - Submitted to LuCaNT

ON PAIRS OF PRIMES WITH SMALL ORDER RECIPROCITY 3

reciprocity is the fundamental and necessary requirement for determining whether
relaxed 2-cycles can exist in the interesting cryptographic ranges.

1.2. Open questions. One can show that there are no prime pairs with
(2, 2)-order reciprocity, but infinitely many prime pairs with (p − 1, q − 1)-order
reciprocity2. However, in between these two extremes there are a number of ques-
tions that are of potential relevance to cryptography. For example, we saw above
that the pair (p, q) = (620461, 15493) has (12, 12)-order reciprocity, but this is the
only such example we found. We state some open questions that warrant further
investigation:

(1) Is (620461, 15493) the only prime pair with (12, 12)-order reciprocity?
(2) Are there any fixed values of (k, k′) with min(k, k) > 4 for which there are

an infinite number of primes with (k, k′)-order reciprocity?
(3) Are there any fixed values of (k, k′) with min(k, k) > 2 for which there are

no pairs of primes with (k, k′)-order reciprocity?

Finally, we pose the question of interest that underlies this work:

(4) Are there any large pairs of primes with small (k, k′)-order reciprocity?

In the search for answers to the above questions, we derived an algorithm for
finding primes with (k, k′)-order reciprocity – this is presented in Section 2. We
used this algorithm to exhaustively search up to the 200 millionth prime for pairs
with small order reciprocity – the database of examples we found is summarised in
Section 3.

We reiterate that we are not interested in the known examples which come from
the MNT parameterisation in (1.1), and that in practice we are therefore interested
in examples with, say, 5 ≤ k, k′ ≤ 50. By large primes, we mean cryptographically
large, i.e. at least 2160.

2. The algorithms

Let p be a prime number and let αp ∈ Fp be such that F×
p = ⟨αp⟩, where

elements in F×
p are represented by the corresponding least positive remainder in

(Z/pZ)×. Then Algorithm 1 returns all q < p such that ordq(p) = k and ordp(q) =
k′. Furthermore, let P be a list of prime numbers and A be a list such that A[i]
is a primitive element modulo P [i]. Algorithm 2 finds all the primes pairs (p, q)
with p ∈ P and q < p such that ordq(p) = k and ordp(q) = k′ or ordq(p) = k′ and
ordp(q) = k.

2.1. Proof of correctness. We start by showing that Algorithm 1 returns all
primes q < p such that ordq(p) = k and ordp(q) = k′. Any such q must be the least
positive remainder of some power of αt

p with t = (p− 1)/k′ in (Z/pZ)×; Lines 4-5
exhaust these possibilities, while Line 6 avoids testing those q which cannot have
exact order k′. Line 13 only keeps those q which are prime and for which elements
of order k exist in (Z/qZ)×. The remainder of Algorithm 1 simply keeps those p
which have exact order k in (Z/qZ)×. Algorithm 2 loops over all combinations of
p, q ∈ P and, for k ̸= k′, makes an additional call to Algorithm 1 to reverse the
order of k and k′.

2For the former, p < q implies p = q − 1, the only option for which is (p, q) = (2, 3), which
has ordp(q) = 1. For the latter, see [Fre19].

2 Jul 2025 19:03:46 PDT

250130-Costello Version 3 - Submitted to LuCaNT

4 CRAIG COSTELLO AND GAURISH KORPAL

Algorithm 1 reciprocity(p, αp, k, k
′)

1: Q← [] // empty list
2: if p ≡ 1 (mod k′) then
3: t← p−1

k′

4: for s = 1 to k′ − 1 do
5: m← s · t
6: if gcd(m, p− 1) = t then
7: q ← αm

p

8: if q ≡ 1 (mod k) and q is prime then
9: // we have found q such that ordp(q) = k′.

10: if pk ≡ 1 (mod q) then
11: b← 1
12: for d = 1 to k − 1 do
13: if k ≡ 0 (mod d) and pd ≡ 1 (mod q) then
14: b← 0
15: break // ordq(p) ̸= k
16: if b = 1 then
17: Q.append(q) // ordq(p) = k
18: return Q

Algorithm 2 primepairs(P,A, k, k′)

1: L← [] // empty list
2: for p in P do
3: Q← reciprocity(p, αp, k, k

′)
4: if #Q ̸= 0 then
5: for q ∈ Q do
6: L.append((p, q))
7: if k ̸= k′ then
8: Q′ ← reciprocity(p, αp, k

′, k)
9: if #Q′ ̸= 0 then

10: for q′ ∈ Q′ do
11: L.append((q′, p))
12: return L

2.2. Complexity analysis. Let p be the largest prime in the list P , whose
cardinality is N . We will analyse the time complexity of Algorithm 2 as p → ∞,
assuming that k and k′ remain fixed, small constants. We will also assume that,
as p→∞, the average size of the primes in P is in O(p); this assumption holds if
P contains all primes within a given interval and, in particular, if P contains all
primes up to p. Algorithm 2 makes either one or two calls to Algorithm 1 for each
prime in P , so it follows that the time complexity of Algorithm 2 is in O(N · R),
where R is the complexity of Algorithm 1 on input of a prime of size in O(p).

We will now proceed step by step through Algorithm 1, stating the time com-
plexity of each step together with the probability of advancing through the control
statements. These can be accumulated in a straightforward way to obtain a precise

2 Jul 2025 19:03:46 PDT

250130-Costello Version 3 - Submitted to LuCaNT

ON PAIRS OF PRIMES WITH SMALL ORDER RECIPROCITY 5

big-O complexity of Algorithm 1, but this becomes a rather messy and nonillustra-
tive expression, so we will eventually ignore all logarithmic factors to instead state
a final big-Õ time complexity.

For small, fixed k and k′, calls to Algorithm 1 advance to Line 6 O(p) times
on average. The time complexity of the GCD algorithm here is in O(log p) and,
heuristically, O(1) of these tests advance to Line 7. The asymptotic complexity
of this exponentiation is in O(log p log2 (log p) log log log p), using the Schönhage–
Strassen algorithm [SS71]. In Line 8, an optimised probabilistic primality test (like
Miller-Rabin [Rab80]) has time complexity O(log3 p), while the deterministic AKS
primality test [AKS04] has time complexity O(log6 p). Since the size of the prime
q is in O(p), the probability of advancing to the remaining steps is in O(1/ log p)
by the Prime Number Theorem.

It follows that Algorithm 1 has time complexity Õ(p), and thus that Algorithm 2

has complexity Õ(N · p). In particular, if P contains all the primes up to p, then

Algorithm 2 has complexity Õ(p2) by the Prime Number Theorem.

3. The database

We used the parallel GP interface of PARI/GP [The24] running on AMD
Ryzen Threadripper PRO 3995WX with 128 GB memory to perform all the compu-
tations. The PARI/GP implementation of the algorithms and the data are available
in

https://github.com/gkorpal/order-reciprocity.

Let P1 be the list of first 100 million primes and P2 be the list of the next 100
million primes. We first performed the primitive element pre-computation for P1

and P2 using the in-built znprimroot function [Coh93, Algorithm 1.4.4].
We then ran Algorithm 2 to find prime pairs in P1 and for prime pairs (where

the largest prime is) in P2 with (k, k′)-order reciprocity, for 2 ≤ k ≤ k′ ≤ 51.
We could not parallelise the outermost for loop of this algorithm because of the
memory sharing restrictions. However, we utilized the parallel GP interface to
simultaneously run the computations for (k, k′) ∈ {{m,m+1}×{n, n+1} | m,n ∈
2Z and 2 ≤ m ≤ n ≤ 50} such that k ≤ k′.

Tables 1 and 2 present sample data, while the repository offers access to the full
dataset. Table 1 highlights that (4, 6)-order reciprocity remains the most prevalent,
even as prime size increases. Meanwhile, Table 2 shows that larger prime sizes result
in most (k, k′)-order reciprocities yielding no prime pairs.

Table 1. Counts of prime pairs with selected (k, k′)-order reci-
procity. The bottom row counts the number of pairs when the
larger prime is in P2.

(k, k′) (4, 6) (3, 10) (3, 14) (4, 46) (2, 35) (11, 49) (15, 45) (38, 45)

#prime P1 738 20 14 8 5 4 3 2
pairs P2 258 0 0 2 2 3 2 2

2 Jul 2025 19:03:46 PDT

250130-Costello Version 3 - Submitted to LuCaNT

https://github.com/gkorpal/order-reciprocity

6 CRAIG COSTELLO AND GAURISH KORPAL

Table 2. Counts of (k, k′)-order reciprocities with selected num-
ber of prime pairs. The bottom row counts the number of (k, k′)-
order reciprocities when the larger prime is in P2.

#prime pairs 0 1 2 3 4 to 12 14 20 258 738 Total

(k, k′)
P1 97 147 209 231 588 1 1 0 1 1275
P2 1108 159 6 1 0 0 0 1 0 1275

References

[AKS04] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in p, Annals of Mathematics 160
(2004), no. 2, 781–793, Preliminary version appeared in 2002.

[BMUS23] M. Bellés-Muñoz, J. Jiménez Urroz, and J. Silva, Revisiting cycles of pairing-friendly

elliptic curves, Advances in cryptology—CRYPTO 2023. Part II, LNCS, vol. 14082,
Springer, Cham, 2023, pp. 3–37.

[BSCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, Scalable zero knowledge via

cycles of elliptic curves, Advances in cryptology—CRYPTO 2014. Part II, LNCS,
vol. 8617, Springer, Heidelberg, 2014, pp. 276–294.

[CCN24] M. Corte-Real Santos, C. Costello, and M. Naehrig, On cycles of pairing-friendly

abelian varieties, Advances in cryptology—CRYPTO 2024. Part IX, LNCS, vol.
14928, Springer, Cham, 2024, pp. 221–253.

[CCW19] A. Chiesa, L. Chua, and M. Weidner, On cycles of pairing-friendly elliptic curves,

SIAM J. Appl. Algebra Geom. 3 (2019), no. 2, 175–192.
[Coh93] H. Cohen, A course in computational algebraic number theory, GTM, vol. 138,

Springer-Verlag, Berlin, 1993.
[Fre19] FredH, Order reciprocity, Mathematics Stack Exchange, 2019, https://math.

stackexchange.com/q/3118669 (version: 2019-02-19).

[FST10] D. Freeman, M. Scott, and E. Teske, A taxonomy of pairing-friendly elliptic curves,
J. Cryptology 23 (2010), no. 2, 224–280.

[GKS11] P. Gaudry, D. Kohel, and B. Smith, Counting points on genus 2 curves with real mul-

tiplication, Advances in cryptology—ASIACRYPT 2011, LNCS, vol. 7073, Springer,
Heidelberg, 2011, pp. 504–519.

[Lee19] S. Lee, Order reciprocity, Mathematics Stack Exchange, 2019, https://math.

stackexchange.com/q/3118453 (version: 2019-02-19).
[MNT01] A. Miyaji, M. Nakabayashi, and S. Takano, Characterization of elliptic curve traces

under FR-reduction, Information security and cryptology—ICISC 2000, LNCS, vol.

2015, Springer, Berlin, 2001, pp. 90–108.
[Rab80] M. O. Rabin, Probabilistic algorithm for testing primality, Journal of Number Theory

12 (1980), no. 1, 128–138.
[SG18] M. Scott and A. Guillevic, A new family of pairing-friendly elliptic curves, Arithmetic

of finite fields, LNCS, vol. 11321, Springer, Cham, 2018, pp. 43–57.

[SS71] A. Schönhage and V. Strassen, Schnelle multiplikation großer zahlen, Computing 7
(1971), no. 3-4, 281–292.

[The24] The PARI Group, Univ. Bordeaux, PARI/GP version 2.15.5, 2024, available from
http://pari.math.u-bordeaux.fr/.

Queensland University of Technology, Brisbane, Australia
Email address: craig.costello@qut.edu.au

University of Arizona, Tucson, United States
Email address: gkorpal@arizona.edu

2 Jul 2025 19:03:46 PDT

250130-Costello Version 3 - Submitted to LuCaNT

https://math.stackexchange.com/q/3118669
https://math.stackexchange.com/q/3118669
https://math.stackexchange.com/q/3118453
https://math.stackexchange.com/q/3118453
http://pari.math.u-bordeaux.fr/

	1. The problem
	2. The algorithms
	3. The database
	References

