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Abstract. In this paper, we prove that the local-global principle for 11-

isogenies for elliptic curves over quadratic fields holds. This gives a positive

answer to a conjecture by Banwait and Cremona [5, Conjecture 1.14]. The
proof is based on the determination of the set of quadratic points on the mod-

ular curve XD10
(11).

1. Introduction

Let K be a number field and let E be an elliptic curve over K. If ℓ is a prime
and E admits a K-rational ℓ-isogeny, then it is easy to show that the reduction
Ẽp/Fp of E at a prime p of good reduction of E also has a Fp-rational ℓ-isogeny,
where Fp is the residue field of p. It is natural to ask the converse question:

Question 1.1. If Ẽp/Fp admits a Fp-rational ℓ-isogeny for a density 1 set of
primes p, then does E/K admit a K-rational ℓ-isogeny?

In [20] Sutherland studied the above question and explained that in most cases,
we can expect the answer to be “yes”. However, the most interesting case is when
the answer is “no” and this local-global property is violated.

The existence of a K-rational ℓ-isogeny for E depends only on the j-invariant
j(E) of E when j(E) ̸= 0, 1728; in other words, if E′/K is an elliptic curve with
j(E) = j(E′) then the answer is “no” for E/K if and only if it is “no” for E′/K.
Following Sutherland, a pair (ℓ, j0) with j0 ̸= 0, 1728 and j0 ∈ K is called excep-
tional for K if there exists an elliptic curve E/K with j(E) = j0 such that the
answer to Question 1.1 is “no”. The prime ℓ of an exceptional pair is called an
exceptional prime for K.

We denote by ρE,ℓ the residual Galois representation that arises from the action
of GK on E(K̄)[ℓ]. We denote by GE,ℓ := Im(ρE,ℓ) ⊆ GL2(Fℓ) and HE,ℓ is the
image of GE,ℓ in PGL2(Fℓ). For j(E) ̸= 0, 1728 the conjugacy class of HE,ℓ in
PGL2(Fℓ) depends only on j(E).

For any number field K, it is known that the prime ℓ = 2 is never an ex-
ceptional prime by [1, Remark 2.5]. Therefore, we assume that ℓ is odd and set
ℓ∗ = (−1)(ℓ−1)/2ℓ. We denote by D2n the dihedral group of order 2n.
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Theorem 1.2 ([20, Theorem 1, Lemma 1]). Suppose
√
ℓ∗ ̸∈ K and (ℓ, j0) is

an exceptional pair for K. Let E/K be an elliptic curve with j(E) = j0. Then, the
following statements hold:

(1) The group HE,ℓ is isomorphic to D2n, where n > 1 is an odd divisor of
(ℓ− 1)/2.

(2) ℓ ≡ 3 (mod 4).
(3) The group GE,ℓ is contained in the normaliser of a split Cartan subgroup

of GL2(Fℓ).

(4) E obtains a rational ℓ-isogeny over K(
√
ℓ∗).

Remark 1.3. As a consequence of Theorem 1.2, when
√
ℓ∗ /∈ K, then any

exceptional pair gives rise to a non-cuspidal K-rational point on the modular curve
XD2n(ℓ) (see the definition in Section 3) for some odd divisor n > 1 of ℓ−1

2 .

Using Theorem 1.2 Sutherland proves that the only exceptional pair for Q is(
7, 2268945

128

)
[20, Theorem 2]. In [5, Proposition 1.3] the authors prove an analogous

result to Theorem 1.2 for the case
√
ℓ∗ ∈ K.

Theorem 1.4 ([5, Proposition 1.3]). Suppose
√
ℓ∗ ∈ K. Then (ℓ, j0) is excep-

tional for K if and only if one of the following holds for elliptic curves E/K with
j(E) = j0:

• HE,ℓ ≃ A4 and ℓ ≡ 1 (mod 12).
• HE,ℓ ≃ S4 and ℓ ≡ 1 (mod 24).
• HE,ℓ ≃ A5 and ℓ ≡ 1 (mod 60).
• HE,ℓ ≃ D2n and ℓ ≡ 1 (mod 4), n > 1 is a divisor of (ℓ− 1)/2, and GE,ℓ

lies in a normaliser of a split Cartan subgroup.

At the same time, Anni [1] focuses only on exceptional primes and proves that
for a given K there are only finitely many.

Theorem 1.5 ([1, Main Theorem]). Let K be a number field of degree d over
Q and discriminant ∆, and let ℓK := max{|∆|, 6d+ 1}. The following holds:

• If (ℓ, j0) is an exceptional pair for K then ℓ ≤ ℓK .
• There are only finitely many exceptional pairs for K with 7 < ℓ ≤ ℓK .

Remark 1.6. The cases ℓ = 2, 3, 5, 7 are also covered in [1]. In particular, the
primes ℓ = 2, 3 are not exceptional for any K, the prime ℓ = 5 is exceptional if and
only if

√
5 ∈ K and the prime ℓ = 7 appears in infinitely many exceptional pairs

for K if and only if the rank over K of the elliptic curve

y2 = x3 − 1715x+ 33614,

is positive.

From Theorem 1.5 we understand that there are two important directions in
which we can look for exceptional primes.

• Either we fix K and determine all the exceptional primes with ℓ ≤ ℓK ,
• or, we fix ℓ and a “suitable” family S of number fields, and determine all
the number fields in S for which ℓ is an exceptional prime.

Remark 1.7. According to Theorem 1.5 a natural choice of the family S is the
set of all number fields of a fixed degree d. This choice becomes even more natural
because, for odd degree extensions K, the bound ℓK = 6d + 1 is a uniform bound
with respect to d [1, Theorem 4.3].
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Name Coordinates

P1 (−3/4, 1/4, 0,
√
77
2 , 0, 1)

P2 (3/4,−5/4, 0,
√
77
2 , 0, 1)

P3 (1, 1, 1,
√
−11,

√
−11, 1)

P4 (−1/3, 0,−1/3,
√
22
3 ,

√
22
3 , 1)

P5 (−2/5, 2/5, 1/5,
√
209
5 ,−

√
209
5 , 1)

P6 (−1, 7, 5,
√
473,−

√
473, 1)

Table 1. The quadratic points of XD10
(11) up to conjugation.

Having all the above results in mind, in particular the fact that 11 is always
in the range of potential exceptional primes when K is a quadratic field, Banwait
and Cremona conjectured that the prime 11 is not an exceptional prime for any
quadratic field K [5, Conjecture 1.14]. In this paper, we give a positive answer to
the conjecture.

Theorem 1.8. The prime 11 is not an exceptional prime for any quadratic
field.

Theorem 1.8 is a consequence of Theorem 1.9 and [5, Proposition 10.1].

Theorem 1.9. The quadratic points of the modular curve XD10
(11) with respect

to the model (3.2) are listed in Table 1 (up to conjugation).

The key ingredients in the proof of Theorem 1.9 are the development of the
(relative) symmetric Chabauty method and the Mordell-Weil sieve [17, 9, 10], the
existence of Assaf’s implementations of the space of modular forms for an arbitrary
congruence subgroup Γ [2], the LMFDB modular curves database [16] and the fact
that its quotient curve X+

D10
(11) is a genus 2 curve such that rank(JXD10

(K)) =

rank(JX+
D10

(K)) for K = Q,Q(
√
−11).

A number of steps in the proofs were verified computationally using the Magma
computer algebra system [7]. In our computations we used Magma V2.28-23.
We rely on the Modular forms package by Eran Assaf [2] https://github.com/
assaferan/ModFrmGL2 and code by Samir Siksek [18] which is available on https:

//github.com/samirsiksek/siksek.github.io/tree/main/progs/chabnf. All
of our computations were done on a machine running Ubuntu 22.04.1 with an 2 Intel
Xeon E5-2660, 8 core CPUs at 2.2/3.0 GHz, 64 GB RAM. Most computations finish
relatively quickly. Only computing the isomorphism between the model computed
by Assaf’s code and our own simplified equation might take more than an hour.
The code used in this paper is available on https://github.com/akoutsianas/

local_global_isogenies. In the paper we will clearly indicate whenever we rely
on Magma. Instructions on how to reproduce the steps can be found in the repos-
itory.
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3. The modular curve XD10
(11)

Let N be a positive integer. Suppose G is a subgroup of GL2(Z/NZ) and
ΓG = {A ∈ SL2(Z) : A (mod N) ∈ G0}. Because ΓG ⊃ Γ(N) we have that ΓG

is a congruence subgroup of SL2(Z). We denote by XG the modular curve that
parametrizes elliptic curves over C whose residual representation modulo N lies in
G up to conjugation. The curve XG has a model defined over Q(ζN )det(G) where
det : G → (Z/NZ)∗ is the determinant map. Over C the curve XG is a compact
Riemann surface and it holds XG(C) ≃ ΓG \H∗.

Let D10 ⊂ PGL2(F11), GD10
the pullback of D10 to GL2(F11) and ΓD10

:=
ΓGD10

. We define the modular curve1 XD10
(11) := XΓD10

which is, from the above,

defined over Q because det(G) = F∗
11 [20, Proposition 3].

In [14] Galbraith described a method to compute a model of a modular curve
X(Γ) for a congruence subgroup Γ as long as we are able to compute a basis of
S2(Γ). Galbraith’s ideas have been used and extended by Banwait and Cremona2

[5, 4], Zywina [21] and Box [8]. Moreover, in [2] Assaf describes a general method
of computing S2(Γ) and the algorithm has been implemented in Magma [7].

In our case we use Assaf’s algorithm and his implementation to compute
S2(ΓD10

). We pick an explicit subgroup H of PGL2(F11) isomorphic to D10; in
particular, the one that is generated by the following matrices

A =

(
4 0
0 3

)
, B =

(
0 1
1 0

)
.

With the terminology of [2, Definition 1.2.1] the group ΓD10
is of real type. Assaf’s

implementation computes the space S2(ΓD10
) which has dimension 6. This implies

that the genus of XD10(11) is 6. We note that one can compute the genus of
XD10(11) using known formulas, for example, in [13, Theorem 3.1.1].

Remark 3.1. A different choice of the generators of D10 gives an isomorphic
space of newforms which will not affect our computations of a model of XD10

(11).

The model we get for XD10
(11) by Assaf’s implementation is given by equations

with big coefficients. However, we know that XD10(11) is isomorphic to X0(121)

1The curve XD10 (11) has label 11.132.6.b.1 in LMFDB beta version [16].
2The authors determine a model for the modular curve XS4

(13).
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over L := Q(
√
−11) [4, Lemma 3.3.7]. A model of X0(121) is given in Galbraith’s

thesis [14, p. 36] which we recall below.

(3.1)

X0(121) :



uw − 2vw + 2ux− 6vx+ 2uy + 2vy + uz = 0,

uw + vw + 2ux− 2vx+ 2uy − 10vy − 5uz + 11vz = 0,

−6u2 + 6uv − 3v2 − w2 + 6wx− x2 − 8wy + 10xy

−9y2 − 4wz + 10xz = 0,

6u2 + 12uv + 12v2 − 17wx− 2x2 − 5wy + 4xy + 14y2

−6wz − 7xz − 11yz = 0,

−9v2 − 8w2 + wx+ 9x2 + 7wy − 10xy + y2 − 7wz + 27xz − 11yz = 0,

−6u2 − 12uv − 12v2 − 3w2 + 7wx− 6x2 + 11wy + 12xy + 10y2 + 4wz

+17xz − 11yz − 11z2 = 0.

We search for a model of XD10
(11) so that it is isomorphic to X0(121) over L

but not over Q. Simultaneously, we test if it is isomorphic to the model obtained
by Assaf’s implementation using IsIsomorphic in Magma [7]. So, at the end we
obtain the following model:

(3.2)

XD10
(11) :



uw − 2vw + 2ux− 6vx+ 2uy + 2vy + uz = 0,

uw + vw + 2ux− 2vx+ 2uy − 10vy − 5uz + 11vz = 0,

−6u2 + 6uv − 3v2 + 11w2 − 66wx+ 11x2 + 88wy − 110xy + 99y2

+44wz − 110xz = 0,

6u2 + 12uv + 12v2 + 187wx+ 22x2 + 55wy − 44xy − 154y2 + 66wz

+77xz + 121yz = 0,

−9v2 + 88w2 − 11wx− 99x2 − 77wy + 110xy − 11y2 + 77wz − 297xz

+121yz = 0,

−6u2 − 12uv − 12v2 + 33w2 − 77wx+ 66x2 − 121wy − 132xy − 110y2

−44wz − 187xz + 121yz + 121z2 = 0

The isomorphism ϕ over L between the two models of XD10(11) and X0(121)
is given explicitly,

ϕ : X0(121) → XD10(11),

[x : y : z : u : v : w] 7→ [x : y : z :
√
−11u :

√
−11v : w].

(3.3)

Let w121 be the Atkin-Lehner involution of X0(121). We define

(3.4) w11 := ϕ ◦ w121 ◦ ϕ−1.

We define X+
0 (121) := X0(121)/w121 and X+

D10
(11) := XD10

(11)/w11.
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Lemma 3.2. The Atkin-Lehner involution w121 on X0(121) and the involution
w11 on XD10(11) are both defined over Q and are given by [x : y : z : u : v : w] 7→
[x : y : z : −u : −v : w] with respect to the models defined by the equations given
above.

Proof. We know that w121 is defined over Q. From [15, Theorem 0.1], [3,
Theorem 8] and [6, Proposition] we get that AutQ(X0(121)) = ⟨w121⟩ ≃ C2. Finally,
the statement for w11 is clear from its definition. □

Then3 C := X+
0 (121) has genus g(C) = 2, hence it is a hyperelliptic curve given

by the equation

(3.5) C : y2 = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1.

We also have explicitly computed the quotient maps ϕX0 : X0(121) → X+
0 (121)

and ϕXD10
: XD10(11) → X+

D10
(11) which can be found in our GitHub repository.

Remark 3.3. In the computations in Section 4 we use the fact that both ϕXD10

and X+
D10

(11) are defined over Q.

Lemma 3.4. The curves X+
0 (121) and X+

D10
(11) are isomorphic over Q.

Proof. We know that X0(121) and XD10
(11) are isomorphic over L under the

isomorphism ϕ above. From (3.3) and (3.4) we observe that

ϕσ =

{
ϕ, σ |L= id,

ϕ ◦ w121 = w11 ◦ ϕ, σ |L ̸= id,

where ϕσ := σ−1 ◦ ϕ ◦ σ and σ ∈ Gal(Q̄/Q). Together with the fact that ϕX0 and
ϕXD10

are defined over Q this implies that, when we take quotients by w121, and

w11, the curves X+
0 (121) and X+

D10
(11) become isomorphic over Q. □

By abusing notation, let ϕXD10
denote the composition of ϕXD10

and the iso-

morphism between X+
D10

(11) ≃ C then we have the commutative diagram

(3.6)

X0(121) XD10
(11)

C

ϕ

ϕX0

ϕXD10

where every map has been computed explicitly.

4. The Mordell-Weil group of JD10

We denote by J0, JD10
and JC the Jacobians of X0(121), XD10

(11) and C,
respectively. It holds that

(4.1) J0 ∼ Ef1 ⊕ Ef2 ⊕ Ef3 ⊕ Ef4 ⊕ E2
f5 ,

where fi for i = 1, 2, 3, 4 are the four rational newforms of level 121, the ordering
is according to the LMFDB, and f5 is the unique rational newform of level 11. By
modularity, fi corresponds to the elliptic curve Efi over Q for each i. It holds that
rankQ(Ef2) = 1 and rankQ(Efi) = 0 for i ̸= 2. Therefore, rankQ(J0) = 1.

Moreover, over L we have rankL(Efi) = 0 for i ̸= 2 and rankL(Ef2) = 2.
Because the isogeny in (4.1) is defined over Q, we get rankL(J0) = rankL(JD10

) = 2.

3We recall that X+
0 (121) ≃ X+

sp(11).
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The curve C has two points at infinity with ∞ = (1, 1, 0) and (−∞) =
(1,−1, 0) in the weighted projective plane P2(1, 3, 1). Using the implementation
of the method [19] in Magma, we prove that JC(Q) ≃ Z/5Z × Z with generators
G1 = [(0,−1)− (−∞)] and G2 = [∞− (−∞)] of order 5 and infinite, respectively.
Since Chabauty’s rank condition is satisfied for C (rank(JC(Q)) = 1 < 2 = g(C)),
we use the implementation of the method of Chabauty and Coleman in Magma to
compute C(Q).

Proposition 4.1. We have that C(Q) = {(1,±2), (0,±1),±∞}.

For the computations and the proofs that follow it is important to explicitly
compute ϕ−1

XD10
(C(Q)). Using Magma we get

ϕ−1
XD10

((1,−2)) = {P1, P̄1}, ϕ−1
XD10

((1, 2)) = {P2, P̄2},

ϕ−1
XD10

(−∞) = {P3, P̄3}, ϕ−1
XD10

(∞) = {P4, P̄4},

ϕ−1
XD10

((0,−1)) = {P5, P̄5}, ϕ−1
XD10

((0, 1)) = {P6, P̄6},

where P̄i is the conjugate of Pi.
We will use the commutative diagram (3.6) and the fact that XD10

(11) is iso-
morphic toX0(121) over L in order to determine a finite index subgroup of JD10

(Q).
The first step is to determine JC(L). Using the information of JC(L) and the

fact that ϕXD10
is defined over Q we are able to determine a finite index supgroup

of JD10
(Q).

Proposition 4.2. It holds that JC(L)Tor = ⟨G1⟩ and rank(JC(L)) = 2. In
particular, the group generated by ⟨G1, G2, G3⟩ is a finite index subgroup of JC(L)
with

G3 =

[(
−1 +

√
−3

2
,−

√
−11

)
+

(
−1−

√
−3

2
,−

√
−11

)
−∞− (−∞)

]
.

Proof. By computing the order of the reduction of JC modulo good primes
and using the fact that the torsion subgroup injects into these groups (in Magma)
we get that #JC(L)Tor ≤ 5. Because #JC(Q)Tor = 5 and JC(Q)Tor ⊂ JC(L)Tor we
understand that JC(L)Tor = JC(Q)Tor = ⟨G1⟩.

Using the implementation of 2-descent [19] in Magma, we also get that rank(JC(L)) ≤
2. The point G3 is a point of infinite order with G3 ̸∈ JC(Q). We prove that G2

and G3 are linearly independent elements in JC(L) by using Siksek’s code. The
idea is the following; if G2, G3 are linear dependent then the pairs (λ, µ) ∈ Z2 such
that λG1 + µG2 = 0 is a subgroup Λ of Z2. We can also assume that there exists
a pair (λ, µ) such that λ, µ are coprime away #JC(L)Tor. Using the reduction of
JC(L) modulo small primes we prove that exist a prime p ∤ #JC(L)Tor such that
Λ ⊆ pZ2. □

Proposition 4.3. It holds that rank(JD10(Q)) = 1 and JD10(Q)Tor is isomor-
phic to C5 or C5 × C5. In particular, the group G = ⟨D1, D2⟩ where

D1 =
[
P6 + P̄6 − P4 − P̄4

]
,

D2 =
[
P3 + P̄3 − P4 − P̄4

]
,

with 5D1 = 0 and D2 has infinite order, is a finite index subgroup of JD10
(Q) such

that 10JD10
(Q) ⊆ G.
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Proof. As in Proposition 4.2 we prove that #JD10
(Q)Tor | 25. At the same

time we also prove that JD10(Q)Tor ̸≃ C25, therefore the torsion part of JD10(Q)
is isomorphic to a subgroup of C5 × C5. We have that ϕ∗

XD10
injects JC(Q)Tor

into JD10
(Q)Tor because (deg(ϕXD10

),#JD10
(Q)Tor) = 1. Since, JC(Q)Tor ≃ C5 we

understand that JD10
(Q)Tor ≃ C5 or C5 × C5. Let D1 = ϕ∗

XD10
(G1) then it holds

5D1 = 0.
The quotient map ϕXD10

: XD10(11) −→ C induces an isogeny JD10 ∼ JC ×
A where A/Q is some abelian variety and the isogeny is defined over Q. Since
rank(JD10(L)) = rank(JC(L)) = 2, we have rank(A(L)) = 0, so rank(A(Q)) = 0.
Hence, rank(JD10(Q)) = rank(JC(Q)) = 1.

Let D2 = ϕ∗
XD10

(G2) ∈ JD10
(Q), then D2 has an infinite order in JD10

(Q) be-

cause G2 has an infinite order in JC(Q). Finally, from the above and [9, Proposition
3.1] we have that 10JD10(Q) ⊆ G. □

5. Symmetric Chabauty

In this section we apply the relative symmetric Chabauty as it is described in
[17, 9, 10]. We also give a brief exposition of the idea of symmetric Chabauty
following [9, Section 2.2].

5.1. Introduction. Let X/Q be a smooth projective curve of genus g that
has good reduction at a prime p > 2. Let J be the Jacobian of X and r the rank
of J(Q). We also assume that r ≤ g − 2, i.e., the Chabauty condition holds for
quadratic points. We denote by X the proper minimal regular model of X. In the
space of global differential forms ΩX/Qp

(X), we have the Zp-submodule ΩX/Zp
(X ).

In [12] Coleman defines the pairing

ΩX/Qp
(X)× J(Qp) → Qp,

(
ω,

[∑
i

Pi −Qi

])
7→
∑
i

∫ Pi

Qi

ω.

We denote by V the annihilator of J(Q) under the above pairing, write V = V ∩
ΩX/Zp

(X ) and let Ṽ be the image of V under the reduction map.

Let Q = {Q1, Q2} ∈ X(2)(Q), where X(2) is the symmetric square of X. Sup-

pose ω1, · · · , ωk is a basis of Ṽ . We fix a place v of Q(Q1, Q2) above p and denote

by Q̃i the reduction of Qi with respect to v. Let tQ̃i
be a uniformiser of Q̃i. Then,

we can expand ωj around Q̃i with respect to tQ̃i
as a formal power series. In

particular, it holds that

(5.1) ωj = (a0(ωj , tQ̃i
) + a1(ωj , tQ̃i

)tQ̃i
+ a2(ωj , tQ̃i

)t2
Q̃i

+ · · · )dtQ̃i

If Q1 ̸= Q2, we define

A =

a0(ω1, tQ̃1
) a0(ω1, tQ̃2

)
...

...
a0(ωk, tQ̃1

) a0(ωk, tQ̃2
)

 ,

and when Q1 = Q2, we define

A =

a0(ω1, tQ̃1
) a1(ω1, tQ̃1

)/2
...

...
a0(ωk, tQ̃1

) a1(ωk, tQ̃1
)/2

 .
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Theorem 5.1 ([17, Theorem 3.2]). Suppose p ≥ 5. If rank(A) = 2, then Q is
the only point on X(2)(Q) in its residue class modulo p, i.e. for any R ∈ X(2)(Q)
such that Q ≡ R (mod v), we have R = Q.

Suppose ρ : X → C is a degree 2 map to a smooth non-singular curve C and C
its proper minimal regular model. We also assume that C has good reduction at p.
Suppose that ρ extends to a morphism X → C which corresponds to a degree 2 map
X̃ = X̃ → CFp

. The map ρ : X → C induces the trace map on the holomorphic
differentials Tr: ΩX/Qp

(X) → ΩC/Qp
(C), for more details, see [10, §2.6].

Let V0 = V ∩ ker
(
ΩX/Qp

(X)
Tr−→ ΩC/Qp

(C)
)
and Ṽ0 the image of V0 under the

reduction map. Let Q = {Q1, Q2} ∈ ρ∗C(Q), ω1, · · · , ωk′ be a basis of Ṽ0 and p, v,

Q̃1, tQ̃1
be as above.

Theorem 5.2 ([17, Theorem 4.3]). Suppose p ≥ 5. If there exist ωi for some
i ∈ {1, · · · , k′} such that

ωi

dtQ̃1

|tQ̃1
=0 ̸= 0,

then every point in X(2)(Q) in the residue class of Q belongs to ρ∗(C(Q)).

5.2. Relative Symmetric Chabauty for XD10
(11). Let W be the image of

1− w∗
11 : ΩXD10

(11)/Q → ΩXD10
(11)/Q.

Proposition 5.3. The space W annihilates JD10
(Q) under the integration

pairing, hence ∫ D

0

ω = 0,

for all ω ∈ W and D ∈ JD10
(Q). In addition, W lies in the kernel of the TrϕXD10

:

ΩXD10
(11)/Q → ΩC/Q.

Proof. The proof is similar to [9, Lemma 3.4] because rank(JD10
(Q)) =

rank(JC(Q)) and 1 + w∗
11 is the trace map with respect to ϕXD10

. We also use

[10, Lemma 2.2]. □

Let W̃ be the image of W ∩ ΩXD10
/Zp

under the reduction map.

Proposition 5.4. The space W̃ is the image of 1−w̃∗
11 : ΩX̃D10

/Fp
→ ΩX̃D10

/Fp
.

Proof. We use [9, Lemma 3.6] and the proof follows in the same way as the
proof of [9, Proposition 3.5]. □

6. Mordell-Weil sieve

In this section, we briefly recall the Mordell-Weil sieve as discussed in [17, 9, 10]
and which has its origin in [11]. Again we follow [9, Section 2.4].

Suppose X/Q be smooth projective curve with Jacobian J and ρ : X → C a
degree 2 map (defined over Q) where C/Q is another curve. We assume that we
have the following data:

(1) D1, · · · , Dr are divisors of J(Q) that generate a finite index subgroup G
of J(Q),

(2) A number N such that NJ(Q) ⊂ G,
(3) A rational degree 2 divisor which we denote by ∞,
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(4) L′ is a known finite subset of X(2)(Q). The set L′ may also include points
from ρ∗(C(Q)),

(5) p1, · · · , pn are primes of good reduction for X.

We define L = L′ ∪ ρ∗C(Q).
Let p be one of the primes p1, · · · , pr. We define the maps ϕ : Zn → G

where ϕ(a1, · · · , an) =
∑n

i=1 aiDi, ι : X
(2)(Q) → G where ι(Q) = N [Q −∞] and

ιp : X̃(2)(Fp) → J(Fp) where ιp(R) = N [R − ∞̃]. In particular, we have the
following diagram

L X(2)(Q) G Zr

X̃(2)(Fp) J(Fp)

i ι

red red

ϕ

ϕp

ιp

where red is the reduction map and ϕp := red ◦ ϕ.

Let Mp ⊂ X̃(2)(Fp) be the subset of points R ∈ ι−1
p (Im(ϕp)) which satisfy one

of the following:

• R ̸∈ red(L′),

• R = Q̃ for some point Q ∈ L′ \ ρ∗C(Q) not satisfying the conditions of
Theorem 5.1,

• R = Q̃ for some ρ∗C(Q) not satisfying the conditions of Theorem 5.2.

Theorem 6.1 (Mordell-Weil sieve [17, Theorem 5.1], [9, Theorem 2.6]). Sup-
pose

r⋂
j=1

ϕ−1
pj

(
ιpj

(
Mpj

))
= ∅,

then X(2)(Q) = L.

7. Proof of Theorem 1.9

In this section we give the proof of Theorem 1.9. With the notation of Section
6 we set L′ = ∅ and L = ϕ∗

XD10
C(Q) ⊂ XD10

(11)(2)(Q).

Proof of Theorem 1.9. We apply relative symmetric Chabauty for p =
5, 7, 13, 17, 19, 23 and we prove that the elements in L are the only elements in
their residue disks modulo p. Because L′ = ∅ we only had to apply Theorem 5.2.
Finally, it is enough to apply the Mordell-Weil sieve, Theorem 6.1, where G is the
finite-index subgroup of JD10

(Q) from Proposition 4.3, and N = 10, for the above
choice of primes and get L = XD10

(11)(2)(Q). □

Proof of Theorem 1.8. We may assume that K ̸= Q(
√
−11) by Theo-

rem 1.4. For the other quadratic fields, we may apply Theorem 1.2 and Remark 1.3,
which explains that it is enough to compute the quadratic points on XD10(11).

From Theorem 1.9 we have determined the quadratic points of XD10
(11). All

the quadratic points of XD10
(11) are pullbacks of the rational points of C. The

image of the set of rational points of C under the j-map has been computed in the
LMFDB modular curves database4 and is equal to

J = [∞,−3375, 8000,−884736, 16581375,−884736000].

4Since C ≃ X+
sp(11) the j-map of C can be found in https://beta.lmfdb.org/ModularCurve/

Q/11.66.2.a.1/.
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Let Φ11(x, y) be the class modular polynomial. With a short script we show
that Φ11(x, j0) has a linear factor over Q[x], hence it also has a linear factor over
any quadratic extension K/Q, for all possible j0 ∈ J with j0 ̸= ∞, which by [5,
Proposition 10.1] is enough to conclude the proof. □
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