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Gluing genus 1 and genus 2 curves along ℓ-torsion
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Abstract. Let Y be a genus 2 curve over Q. We provide a method to sys-
tematically search for possible candidates of a prime ℓ ≥ 3 and a genus 1

curve X for which there exists a genus 3 curve Z over Q whose Jacobian is
up to quadratic twist (ℓ, ℓ, ℓ)-isogenous to the product of Jacobians of X and

Y , building off of the work by Hanselman, Schiavone, and Sijsling for ℓ = 2.

We find several such pairs (X,Y ) for prime ℓ up to 13. We also improve their
numerical gluing algorithm, allowing us to successfully glue genus 1 and genus

2 curves along their 13-torsion.

1. Introduction

The study of curves is a central topic in arithmetic geometry. Exhaustive lists
of curves have long been a useful tool in number theory, starting with the Antwerp
tables that contain elliptic curves up to conductor 200 [BK75], continuing with
Cremona’s tables of elliptic curves [Cre06], and persisting today with the collections
of elliptic curves and genus 2 curves in the LMFDB [LMFDB].

For higher genus curves, a large number of curves can be constructed by gluing
curves of smaller genera. For any two curves X and Y of genera gX and gY , the
process of gluing produces a curve Z of genus gX + gY such that the Jacobian of
Z, denoted Jac(Z), is isogenous to the product Jac(X) × Jac(Y ). In other words,
Jac(Z) is a quotient of Jac(X)× Jac(Y ) by a finite subgroup G. If G is a subgroup
of the product of the n-torsion subgroups Jac(X)[n] and Jac(Y )[n] for a positive
integer n, we say that this gluing is along n-torsion .

Given generic curves X and Y , there are many possible choices of subgroups
G that give rise to gluings over C, and one can construct those gluings analytically
by considering Jac(X) and Jac(Y ) as complex tori. However, for arithmetic appli-
cations, we are interested in curves defined over non-algebraically closed fields such
as Q. If we take curves X and Y at random, then it is very likely there will be
no gluing Z that is defined over Q. We are interested in systematically producing
pairs of curves that admit a gluing over Q. These curves often have interesting
properties that deviate from generic behavior, such as special torsion structure,
nontrivial endomorphism ring, or interesting Sato-Tate groups.

1.1. Previous Work. The simpler case of gluing two curves of genus 1 (i.e.,
1 + 1 = 2) has been studied in many aspects.
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(i) Criteria for gluings to exist. Frey and Kani [FK91] show how to
derive the necessary conditions for two curves to be gluable to each other
along n-torsion, namely, if E1 and E2 are gluable, then there exists an
antisymplectic, Gal(Q/Q)-equivariant isomorphism E1[n] → E2[n].

(ii) Find all gluable pairs. Next, we are interested in the following problem:
given a list of elliptic curves (e.g., all elliptic curves in the L-functions and
modular forms database, LMFDB [LMFDB]), systematically search for
all pairs that are gluable. When n = ℓ is prime, Cremona and Freitas
[CF22] gave a complete algorithm for detecting all such antisymplectic
isomorphisms and applied their methods to all pairs of elliptic curves in
the LMFDB.

(iii) Parametrize all gluable pairs. We can go one step further from (ii)
and ask if one can parameterize all pairs of elliptic curves that are gluable.
For a fixed elliptic curve E1, the space of all elliptic curves E2 that are
gluable is one-dimensional and is a twist of the modular curve X(n). For
n ∈ {2, 3, 4, 5}, the genus of X(n) is 0, so the space is isomorphic to P1.
The details have been worked out by Rubin and Silverberg in [RS01],
[RS95], and [Sil97]. Fisher [Fis14] works out formulas for n ∈ {7, 11}, but
in that case there are finitely many E2’s for a fixed E1. There are also
efforts to parametrize pairs of gluable elliptic curve along n-torsion for
higher n: Fisher [Fis20, Cor. 1.3] shows that there are infinitely many
pairs of gluable curves for all n ≤ 10.

(iv) Computing gluing. One way to compute gluings over Q is to do it
analytically over C. In simpler cases, we also have explicit formulas. Howe,
Leprévost, and Poonen [HLP00, Prop. 4] gave an explicit formula for
gluing along 2-torsion and used it to construct genus 2 curves with large
rational torsion subgroups. More recently, Bröker et. al. [BHLS15, §A.1]
also gives a formula for gluing along 3-torsion. As ℓ grows larger, the
explicit formulas quickly become unwieldy.

Genus 1 plus genus 2 gluing (i.e., 1 + 2 = 3) has not been studied as widely.
Ritzenthaler and Romagny [RR18] gave a formula for recovering the equation of
the genus 2 factor of a genus 1 plus genus 2 gluing along 2-torsion, given that we
know the genus 1 factor. Then, Hanselman, Schiavone, and Sijsling [HSS21] gave
a comprehensive algorithm and explicit formula for gluing along 2-torsion. They
answer to some of the questions above for gluing genus 1 and 2 curves as follows.

• To answer (i), they [HSS21, §1] provide a concrete criteria for a gluing
along ℓ-torsion to exist, which we recall in Section 2.

• To answer (iv), they [HSS21, §2.1] outline the analytic algorithm to com-
pute the gluing along ℓ-torsion, which was implemented in [HSS20]. In
the case of ℓ = 2, they also provide an explicit formula to glue genus 1
and 2 curves along 2-torsion.

• To answer (iii), in the case of ℓ = 2, for a genus two curve Y , Hanselman
[Han20, §2.2] constructs an infinite family of genus 3 curve resulting from
gluing Y with an elliptic curve along their 2-torsion.

More generally, for a fixed genus 2 curve Y such that there exists an
elliptic curve X that admits gluing along ℓ-torsion, one can reduce the
problem of finding all gluable elliptic curves X ′ to finding elliptic curves
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GLUING GENUS 1 AND GENUS 2 CURVES ALONG ℓ-TORSION 3

X ′ whose ℓ-torsion is symplectically isomorphic (as a Gal(Q/Q)-module)
to the ℓ-torsion of X. See Lemma 6.1 for more details.

Our work attempts to answer (ii) and gives improvement to existing methods
in (iv).

1.2. Our Results. This paper considers the problem of gluing two curves of
genus 1 and genus 2 along their ℓ-torsion to obtain a curve of genus 3 for prime ℓ.
We focus on the case ℓ ≥ 3 that has not been as widely studied. There are two key
results.

The first key result is that, given a curve Y of genus 2, we demonstrate how
to systematically and efficiently search for genus 1 curves X in the LMFDB and
corresponding primes ℓ such that X and Y are gluable along ℓ-torsion. More
specifically, given a genus 2 curve Y , we first rule out all but finitely many ℓ’s.
Then, for each such ℓ, we search for elliptic curves X such that there exists a
Gal(Q/Q)-stable subgroup G ⊂ Jac(X)[ℓ]× Jac(Y )[ℓ] such that the quotient

(1.1) Q =
Jac(X)× Jac(Y )

G

is a principally-polarized abelian variety. The search process culminates in the
workflow described in Section 6. We also provide an algorithm to rigorously verify
the existence of such G in the generic case in Algorithm 4.17 and Algorithm 5.11. If
Q is isomorphic to a Jacobian of some genus 3 curve Z (which happens generically,
when Q is not a product of two or more Jacobians), then curves X and Y would
produce a gluing Z. We use this result to glue a large number of curves in the
LMFDB and discover curves with an interesting geometric endomorphism ring in
Section 7.2.

The second key result is an improvement of the numerical gluing algorithm
in [HSS21, §2.1] to obtain a more efficient algorithm, Algorithm 6.4. With this
algorithm, we are able to reduce the time taken to the point that we are able glue
along 13-torsion in 24 minutes in Example 7.4.

1.3. Organization of the Article. In Section 2, we describe the condition
under which two curves are gluable as given in [HSS21]. Then, in Section 3, we
explain how to use Frobenius elements to efficiently filter pairs of gluable curves.
Section 4 explains how to utilize Serre’s modularity conjecture to rigorously verify
(in the generic case) part of the gluability condition. Section 5 adapts the symplectic
test in [FK22] to verify other part of the gluability condition. We put all the
pieces together and describe our current workflow in Section 6, which includes the
speedup of the gluing algorithm. Finally, Section 7 lists some examples produced
from running our workflow on curves in the LMFDB.

1.4. Notations. For any prime p and rational number r ̸= 0, let νp(r) be the
p-adic valuation of r, i.e., the exponent of p in the prime factorization of r.

For any abelian variety A over a field k and a positive integer n, A[n] denotes
the set of n-torsion points over its algebraic closure k. For any curve X, we let NX

denote the conductor of X, and for any prime p not dividing NX , let ap,X denote
the trace of Frobenius at p of X. Additionally, we define ap,X to be equal to 1, −1,
and 0 if X is an elliptic curve with split multiplicative, non-split multiplicative, and
additive reduction modulo p, respectively.
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2. Gluability Conditions

Let n ≥ 2 be an integer. Let X and Y be smooth curves of any genus over
a base field k with characteristic not dividing n. Informally, a gluing of X and
Y is a curve Z with an isomorphism Jac(Z) ≃ (Jac(X) × Jac(Y ))/G, where G is
a subgroup of (Jac(X) × Jac(Y ))[n] for some n. Such an isomorphism does not
exist for all subgroups G; in what follows, we consider some necessary conditions
for (Jac(X) × Jac(Y ))/G to be isomorphic to a Jacobian and consider how they
translate to conditions on G.

First, the Jacobian of any curve C comes with a principal polarization .
This is an isomorphism λ : Jac(C) → Jac(C)∨, satisfying technical conditions laid
out in [Mil08, §1.11]. We will consider more generally necessary conditions for
(A1×A2)/G to be a Jacobian, where A1 and A2 are arbitrary principally polarized
abelian varieties. Let λ1 : A1 → A∨

1 and λ2 : A2 → A∨
2 be these polarizations.

For any abelian variety A, a polarization λ : A → A∨ induces for each n the
Weil Pairing

(2.1) eλn : A[n]×A[n] → µn,

an alternating bilinear form taking values in the n-th roots of unity. (See [Mil08,
§1.13] for the exact definition.)

The pairings eλ1
n and eλ2

n on A1 and A2 induce a pairing

(2.2)
en : (A1 ×A2)[n]× (A1 ×A2)[n] → µn

((P1, P2), (Q1, Q2)) 7→ eλ1
n (P1, Q1) e

λ2
n (P2, Q2)

coming from the product polarization

(2.3) λ1 × λ2 : A1 ×A2 → A∨
1 ×A∨

2 ≃ (A1 ×A2)
∨.

We only consider cases in which the polarization on the quotient comes from
the n-th power of this product polarization. (See [Han20, Rmk. 1.1.4, Thm. 1.1.10]
for why generically one does not gain anything by considering polarizations other
than the n-th power of the product.) In order for this to yield a polarization on the
quotient, Gmust be isotropic, i.e., the pairing must vanish on G×G. Furthermore,
by [BCCK24, Lem. 2.1] G must be maximal with respect to this property in order
for the polarization to be principal.

The polarization of any Jacobian is indecomposable, so it is also necessary for
the polarization on the quotient be indecomposable. For this reason, it is also
necessary that G be indecomposable , i.e., not of the form G1 ×G2 for G1 ⊂ A1,
G2 ⊂ A2, as otherwise the polarization will be a product of polarizations on A1/G1

and A2/G2.
To summarize, G must be an indecomposable maximal isotropic sub-

group. Let us now specialize to the case where A1 = Jac(X) and A2 = Jac(Y )
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for curves X and Y of genera 1 and 2, respectively. Suppose that G is an inde-
composable maximal isotropic subgroup. Then (Jac(X)× Jac(Y ))/G is an abelian
variety of dimension 3 defined over some extension k′ of k. If the polarization of
(Jac(X)× Jac(Y ))/G is indecomposable, then by [OU73], (Jac(X)× Jac(Y ))/G is
isomorphic to the Jacobian of some curve Z, where Z and the isomorphism are de-
fined over some further extension k′′ of k′. Serre proved in the appendix to [Lau01]
that one may in fact take k′′ to be a quadratic extension of k′.

With this information, we can now formally define a gluing.

Definition 2.4. An (n, n)-gluing of the curves X and Y over k is a triple
(Z,ψ,G), where Z is a smooth curve over k and a subgroup G ⊆ Jac(X)[n] ×
Jac(Y )[n] such that along with an isomorphism of principally polarized abelian
varieties

(2.5) ψ :
Jac(X)× Jac(Y )

G

∼−→ Jac(Z).

In the situation when n = ℓ, a prime number, [HSS21, §1] gives the following
description of such subgroups.

Proposition 2.6. [HSS21, Prop. 1.18] A subgroup G ⊆ Jac(X)[ℓ] × Jac(Y )[ℓ] is
an indecomposable maximal isotropic subgroup if and only if

(2.7) G = {(x, y) | ϕ(x) = y +H}

for some one-dimensional subgroup H ⊂ G and some antisymplectic isomorphism
ϕ : Jac(X)[ℓ] → H⊥/H.

For most choices of G, the resulting abelian variety (Jac(X)× Jac(Y ))/G will
not be defined over k. In order for (Jac(X) × Jac(Y ))/G to be defined over k, it
is necessary that G be Galois-stable. [HSS21, Prop. 1.39] worked out what this
means in terms of (G,ϕ) in Proposition 2.6.

Theorem 2.8. [HSS21, Prop. 1.39] Following the notations of Proposition 2.6, G
is Galois stable if and only if both of the following holds

(i) H is Galois-stable.
(ii) ϕ is Galois-equivariant.

Conversely, from the paragraph preceding Definition 2.4, we have the following
converse.

Theorem 2.9. Suppose that

(i) G is Galois-stable (i.e., satisfies both conditions of Theorem 2.8); and
(ii) the quotient (Jac(X)× Jac(Y ))/G is not a product of two or more Jaco-

bians.

Then, there exists a curve Z such that Jac(Z) ≃ (Jac(X) × Jac(Y ))/G, and the
isomorphism is defined over a quadratic extension of k.

Condition (ii) of Theorem 2.9 can be verified numerically in terms of period
matrix of (Jac(X)×Jac(Y ))/G: at most one of its even theta values can vanish. For
most of the paper, we focus on searching for pairs of curves (X,Y ) over Q for which
there exists a Galois-stable maximal isotropic subgroup G ⊂ Jac(X)[ℓ]× Jac(Y )[ℓ]
(equivalently, (H,ϕ) satisfying the conditions of Theorem 2.8). For this to hold, we
need both of the following to be true:
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6 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

(i) there exists a Gal(Q/Q)-stable subgroup of Jac(Y )[ℓ].
(ii) H⊥/H and Jac(X)[ℓ] are isomorphic as Gal(Q/Q)-modules, and the iso-

morphism is antisymplectic.

Fix a genus 2 curve Y . In Section 3, we describe how to rule out elliptic curves that
do not satisfy (i) or the isomorphic part of (ii). Then, in Section 5, we discuss how
to test the remaining condition of (ii): that the isomorphism is antisymplectic.

Remark 2.10. Even if there exists a Galois-stable maximal isotropic subgroup
of Jac(X)[ℓ] × Jac(Y )[ℓ], there might still not be a gluing. Consider the genus 2
curve Y given by 2646.b.71442.1 on the LMFDB, the elliptic curve X given by
21.a6 on the LMFDB, and ℓ = 3. In this case, we can show that there exists
such subgroup G. However, we have strong numerical evidence that there does not
exist a gluing between X and Y . More specifically, the Jacobian of the genus 2
curve is 2-isogenous product of two elliptic curves, and quotienting out by G splits
the Jac(Y ) factor into product of two elliptic curves. We have yet to investigate a
condition to tell a priori whether (Jac(X)× Jac(Y ))/G will be a Jacobian or not.

3. Rational ℓ-torsion Subgroups

Throughout this section, we fix a genus 2 curve Y and study for what primes
ℓ there might exist an (ℓ, ℓ)-gluing, and if so, whether there exists such a genus 1
curve X for which X and Y admit an (ℓ, ℓ)-gluing.

It turns out that for a fixed Y , the condition (i) of Theorem 2.8 already rules
out the possible primes ℓ to a finite set, which we detail in Section 3.1. Then, once
we know ℓ, we present an algorithm that computes the trace of Frobenius element
acting on H⊥/H in Section 3.2. We explain how this constrains X in Section 3.3.

We now introduce the concept of a Frobenius polynomial. For any prime p ̸= ℓ
and genus two curve Y for which Y has good reduction Y modulo p, let K be a
number field such that Jac(Y ) has a full ℓ-torsion over K. Pick any prime ideal p
above p, and let Frobp ∈ Gal(K/Q) be the Frobenius element corresponding to p1.
Then, Fp := OK/p is a finite field, and Frobp acts on points on Jac(Y ) in a way
that

(3.1) Frobp((x : y : z)) ≡ (xp : yp : zp) (mod p)

Thus, we get an action of Frobp on Jac(Y )[ℓ] ≃ F4
ℓ by a linear map in GL4(Fℓ)

with characteristic polynomial congruent modulo ℓ to the Frobenius polynomial ,
which is of the form

(3.2) FY,p(T ) := T 4 − ap,Y T
3 + a′p,Y T

2 − pap,Y T + p2 ∈ Z[x],

independent of ℓ. The coefficients ap,Y and a′p,Y is determined by the number points

of Y over Fp and Fp2 . See [Mil08, Chapter II] for more details.

3.1. Finding Possible Primes. The condition that Jac(Y )[ℓ] must have a
1-dimensional Galois-stable subspace H already restricts the possible values of ℓ to
a finite set, even without knowing the curve X. Let L be a set of primes for which
H exists. An algorithm to determine a finite superset of L is studied in [BCCK24,
§3.1], using Dieulefait’s criterion in [Die02, §3.1]. Their algorithm only filters out ℓ
not dividing the conductor NY and does not do anything for those ℓ’s that divide

1Although Frobp is defined only up to conjugacy class, the choice of which Frobp we pick

will not matter.
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NY . Thus, we modify their algorithm so that it can rule out some primes ℓ dividing
NY as well.

The action of an element σ ∈ Gal(Q/Q) on Jac(Y )[ℓ] ∈ F4
ℓ can be expressed as a

matrix in GL4(Fℓ). This induces a representation ρY : Gal(Q/Q) → GL(Jac(Y )[ℓ])
of dimension 4. The 1-dimensional Gal(Q/Q)-stable subspace H induces two 1-
dimensional representations Gal(Q/Q) → F×

ℓ :

• on H itself; we let this representation correspond to the character

ε1 : Gal(Q/Q) → GL(H) ≃ F×
ℓ .

• on Jac(Y )[ℓ]/H⊥ (by Galois-equivariance of the Weil pairing); we let this
representation correspond to the character

ε2 : Gal(Q/Q) → GL(Jac(Y )[ℓ]/H⊥) ≃ F×
ℓ .

By Galois-equivariance of the Weil pairing, we have ε1ε2 = χℓ, where χℓ is the mod-

ℓ cyclotomic character (the unique character such that σ(ζℓ) = ζ
χℓ(σ)
ℓ ). Because

F×
ℓ is abelian, by the Kronecker-Weber theorem, εi (i = 1, 2) must factor through

Gal(Q(ζe)/Q) ≃ (Z/eZ)× for some positive integer e (where ζe is a primitive e-th
root of unity). The smallest such e is called the conductor of εi.

Proposition 3.3. Let NY be the conductor of Y , and let d be the largest integer
such that d2 divides NY /ℓ

νℓ(NY ). Define

(3.4) D =

{
ℓd if ℓ divides NY ,

d if ℓ does not divide NY .

Then, the conductor of at least one of ε1 and ε2 divides D.

Proof. First, we show in general that the conductor of ε1 and ε2 both divide
ℓd. Let Iℓ = Gal(Qℓ/Qunr

ℓ ) be the inertia group. By [Ser87, §2.3], there exist α

and β such that if ε′1 = ε1χ
−α
ℓ and ε′2 = ε2χ

−β
ℓ , then both ε′1 and ε′2 are characters

from Gal(Q/Q) → F×
ℓ unramified at ℓ. Since ε1ε2 = χℓ, we must have α + β ≡ 1

(mod ℓ−1) and ε′1ε
′
2 is the trivial character. In particular, ε′1 and ε′2 have the same

conductor; let it be k.
Therefore, k2 divides the conductor of the mod-ℓ representation ρY , so k2

divides NY /ℓ
νℓ(NY ), so k divides d. Thus, the conductors of ε′1 and ε′2 both divides

d, which implies that the conductors of both ε1 and ε2 divides ℓd.
Now, assume ℓ does not divide NY . By a result due to Raynaud [Ray74,

Cor. 3.4.4], we have that {α, β} = {0, 1}. Therefore, at least one of ε1 and ε2 is
unramified away from ℓ, implying that the conductor of ε1 or ε2 is the same as that
of ε′1 or ε′2. □

Proposition 3.3 shows that at least one of ε1 and ε2, say ε, factors through
Gal(Q(ζD)/Q) ≃ (Z/DZ)×, inducing a Dirichlet character χ : (Z/DZ)× → F×

ℓ .
This narrows down the possible candidates for χ to a finite set.

Furthermore, for any prime p, the image of Frobp in Gal(Q(ζD)/Q) ≃ (Z/DZ)×
is p. Thus, if f is the order of p in (Z/DZ)×, then

(3.5) ε (Frobp)
f
= ε
(
Frobfp

)
= ε

(
pf
)
= ε(1) = 1.

Moreover, ε(Frobp) is an eigenvalue of Frobp (with eigenvector in H). This means
that the polynomial T − ε(Frobp) divides FY,p(T ). In other words, FY,p(T ) and
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8 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

T f − 1 have a common root in Fℓ, and so the resultant Res(FY,p(T ), T
f − 1) is

divisible by ℓ. This gives rise to the following algorithm.

Algorithm 3.6. Input: a curve Y of genus 2, its conductor NY , and a finite
nonempty set of primes P, each of which gives good reduction of Y .

Output: a finite superset of L, the set of primes ℓ for which there exists a
one-dimensional Gal(Q/Q)-stable subgroup H ⊂ Jac(X)[ℓ].

(1) Let d be the largest positive integer such that d2 | NY .
(2) For each prime p ∈ P, do the following:

• compute the Frobenius polynomial FY,p(T ); and
• compute the order fp of p in (Z/dZ)×.

(3) Let Lgood be the set of primes dividing gcdp∈P Res(FY,p(T ), T
fp − 1).

(4) For each prime ℓ dividing NY , we run the following test for each prime
p ∈ P.

• Compute the Frobenius polynomial FY,p(T ) and the order gp of p in
(Z/ℓdZ)×; and

• Check whether FY,p(T ) and T
gp − 1 have a common root in Fℓ.

Let Lbad be the set of primes ℓ dividing NY that pass the above test for
all primes p.

(5) Return L = Lgood ∪ Lbad.

The discussion preceding this algorithm shows that Algorithm 3.6 indeed re-
turns a valid superset of L. Such a superset is always finite: by the Riemann hypoth-
esis for curves, all roots of FY,p have absolute value

√
p, so Res(FY,p(T ), T

fp−1) ̸= 0
for all primes p, and hence Lgood is always finite.

3.2. The Frobenius Action on H⊥/H. Assuming that H exists, we now
proceed to study the condition (ii) of Theorem 2.8. We defer the study of the sym-
plectic condition to Section 5 and focus on the condition that H⊥/H and Jac(X)[ℓ]
are isomorphic as Gal(Q/Q)-modules.

For any prime p at which Y has good reduction, the Frobenius element Frobp
acts on H⊥/H ≃ F2

ℓ by a matrix in GL2(Fℓ). We define

(3.7) bp = trace of Frobp on H⊥/H.

The traces bp are important data describing the Galois action on H⊥/H, which
will allow us to search for a suitable elliptic curve X. See Proposition 3.10 for more
details. In this subsection, we will explain how to narrow down the possible values
of bp.

Recall from Section 3.1 that the action of Gal(Q/Q) on H is determined by a
character ε : Gal(Q/Q) → F×

ℓ , and ε factors through Gal(Q(ζD)/Q) ≃ (Z/DZ)×,
where D is defined in (3.4). Thus, ε corresponds to a Dirichlet character χ :
(Z/DZ)× → F×

ℓ , and we have ε(Frobp) = χ(p).
For any prime p, the action of Frobp onto the one-dimensional subspace H and

Jac(Y )[ℓ]/H⊥ must be multiplication by χ(p) and p/χ(p) in some order, which are
two eigenvalues of Frobp acting on Jac(Y ). The trace on H⊥/H must be the sum
of the remaining two eigenvalues. Thus,

(3.8) bp = ap,Y − χ(p)− p

χ(p)
(mod ℓ).

Hence, if one knows χ, one can determine bp for all p. For a fixed Y , there are
finitely many possibilities for χ : (Z/DZ)× → F×

ℓ . We rule out χ by checking that,
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for any prime q not dividing NY , the number χ(q) is a root of FY,q(T ). This leads
to the following algorithm.

Algorithm 3.9. Input. A genus 2 curve Y , its conductor NY , a prime ℓ, and a
finite set of primes Q.

Output. A finite list of candidate functions that take a prime number p ̸= ℓ
and output bp (defined in (3.7)) modulo ℓ.

For each one-dimensional Galois-stable subgroup H ⊂ Jac(Y )[ℓ], the function
that outputs the trace of Frobp on H⊥/H must be in the output list (but there
might be extraneous functions).

(1) Compute D as defined in (3.4).
(2) Enumerate the set X of all Dirichlet characters (Z/DZ)× → F×

ℓ .
(3) For each prime q ∈ Q, compute FY,q(T ). Remove from X any character

χ such that χ(q) is not a root of FY,q(T ).
(4) For each function χ ∈ X , we return the function

p 7→ ap,Y − χ(p)− p

χ(p)
(mod ℓ).

From (3.8), we can see that the output of this algorithm includes at least one
function for each possible H. If there are multiple possible H’s, the algorithm
returns multiple functions, each corresponding to a candidate H.

3.3. Frobenius Traces of Gluable Elliptic Curve. For this entire section,
fix a genus 2 curve Y and a prime ℓ ≥ 3 such that there exists a one-dimensional
Gal(Q/Q)-stable subgroup H ⊂ Jac(Y )[ℓ]. For any prime p at which Y has good
reduction, let bp denote the trace of Frobp in H⊥/H (which we have narrowed down
the possibilities in Algorithm 3.9).

Suppose that X is an elliptic curve such that Jac(X)[ℓ] and H⊥/H are isomor-
phic as Gal(Q/Q)-modules. By comparing bp with the trace of Frobenius at p of
X (which we denoted ap,X), we can rule out some of such X, as detailed in the
following proposition.

Proposition 3.10. Let X be an elliptic curve such that Jac(X)[ℓ] and H⊥/H are
isomorphic as Gal(Q/Q)-modules. Let p ̸= ℓ be a prime such that Y has good
reduction modulo p.

(i) If X has good reduction modulo p, then bp ≡ ap,X (mod ℓ).
(ii) If X has split multiplicative reduction modulo p, then bp ≡ 1+ p (mod ℓ).
(iii) If X has non-split multiplicative reduction modulo p, then bp ≡ −(1 + p)

(mod ℓ).
(iv) If ℓ ≥ 5, then X cannot have additive reduction modulo p.

Proof.

(i) The Frobenius element Frobp acts on H⊥/H and on XFp
[ℓ] by the same

matrix in GL2(Fℓ) up to a change of basis. Thus, they have the same
trace modulo ℓ.

(ii) By the theory on Tate’s curve [Sil94, Thm. V.5.3.], there exists q ∈ Qp

such that XQp
≃ Qp

×
/qZ as groups. This isomorphism is Galois equi-

variant. By considering the ℓ-torsion of both sides, we find that XQp
[ℓ] ≃

⟨q1/ℓ, ζℓ⟩ (where ζℓ is the ℓ-root of unity). Therefore, the Frobenius el-
ement Frobp acts on XFp

[ℓ] by matrix
(
1 ∗
0 p

)
, so it must act on H⊥/H
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10 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

by the same matrix in modulo ℓ. Hence, we conclude that bp ≡ 1 + p
(mod ℓ).

(iii) There exists a quadratic twist X ′ of X such that X ′ has a split multi-
plicative reduction modulo ℓ. By (ii), the trace of Frobp acting on X ′

Fp
[ℓ]

is 1+p. Thus, the trace of Frobp acting on XFp
[ℓ] is −(1+p), which must

be equal to bp in modulo ℓ.
(iv) If p ̸= ℓ ≥ 5 andX has additive reduction modulo p, then we claim that the

torsion field Q(X[ℓ]) is ramified at p. To see this, following the notations of
[Sil09, Chapter VII], let X0 and X1 denote the points in XQp that reduce

to non-singular point and the additive identity Õ in XFp , respectively. By
[Sil09, Thm. VII.6.1], the size of the group XQp

/X0 is at most 4. Thus,
for ℓ ≥ 5, we have XQp

[ℓ] ⊆ X0. However, if Q(Jac(X)[ℓ]) were unramified
at p, X1 would not have any ℓ-torsion, so by [Sil09, Prop. 2.1], one would
have (Z/ℓZ)2 as a subgroup of (XFp

)ns ≃ (Fp,+), a contradiction.

Thus, the Galois representation ρX : Gal(Q/Q) → GL2(Fℓ) is ramified
at p. However, the Galois representation ρH⊥/H : Gal(Q/Q) → GL2(Fℓ)
is isomorphic to ρX but is unramified at p, a contradiction. □

Corollary 3.11. Suppose p ̸= ℓ and ℓ ≥ 5. If

(3.12) bp /∈ {−(p+ 1), p+ 1} ∪ [−2
√
p, 2

√
p],

then there is no elliptic curve X such that H⊥/H and Jac(X)[ℓ] are isomorphic as
Gal(Q/Q)-modules.

Proof. Follows from Proposition 3.10 and Hasse-Weil bound. □

Corollary 3.11 can be used to prove that some genus 2 curves have no gluable
elliptic curves. We provide an example for ℓ ∈ {11, 13, 19}.

Example 3.13. The following are genus 2 curves for which there exists H, but
does not have any elliptic curve that admits a gluing over Q.

• ℓ = 11. The curve Y with LMFDB label 353.a.353.1 and equation
y2 + (x3 + x + 1)y = x2 has rational 11-torsion point (so H exists), and
its Frobenius polynomial at 2 is

FY,2(T ) = T 4 + T 3 + 3T 2 + 2T 3 + 4

= (T − 1)(T − 2)(T 2 + 4T + 2).

Following Algorithm 3.9, we have χ ≡ 1, so we can compute b2 = −4
(mod 11).

• ℓ = 13. The curve with LMFDB label 349.a.349.1 and equation y2 +
(x3 + x2 + x+ 1)y = −x3 − x2 has a rational 13-torsion point and b2 ≡ 8
(mod 13).

• ℓ = 19. The curve with LMFDB label 169.a.169.1 and equation y2 +
(x3 + x + 1)y = x5 + x4 has a rational 19-torsion point and b2 ≡ −6
(mod 19).

By Corollary 3.11, there is no elliptic curve gluable to any of the three examples
above.

Remark 3.14. When ℓ ∈ {3, 5}, by [Rub97, Thm. 3], there always exists an elliptic
curve X such that H⊥/H and Jac(X)[ℓ] are isomorphic as Gal(Q/Q)-modules.
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Furthermore, one can make it isomorphic with a correct symplectic type [Fis06,
§13]. Thus, there always exists a gluable elliptic curve provided that ℓ ∈ {3, 5} and
H exists.

We do not yet know whether there is an example of a genus 2 curve for which
H exists when ℓ = 7, but there is no gluable elliptic curve.

4. Proving Isomorphism of Galois Representations

In this section, we utilize Serre’s modularity conjecture to study the action
of Gal(Q/Q) on H⊥/H more closely. The result of this is that, if the Galois
representation associated to H⊥/H is irreducible, then there is an algorithm to
rigorously prove that H⊥/H and Jac(X)[ℓ] are isomorphic as Gal(Q/Q)-modules.

We begin by reviewing the statement of Serre’s modularity conjecture in Sec-
tion 4.1 and use it to show that the representation corresponding to H⊥/H is
modular in Section 4.2. After this, the algorithm is divided into two steps.

(1) Proving that there indeed exists a one-dimensional Gal(Q/Q)-stable sub-
group H ⊂ Jac(Y )[ℓ]. We do this by utilizing a numerical algorithm from
analytic description of Y . This is detailed in Section 4.3.

(2) Proving the isomorphism between H⊥/H and Jac(X)[ℓ]. We do this by
combining modularity of the representation corresponding to H⊥/H and
Sturm’s bound. This gives an explicit bound on how many Frobenius
traces to check, which is explained in Section 4.4.

Finally, in Section 4.5, we provide some comments about when the reducible case.

4.1. Serre’s Modularity Conjecture. In this section, we briefly review the
statement of Serre’s modularity conjecture, which was proven by Khare and Win-
tenberger in [KW09].

Let H = {z ∈ C : Im(z) ≥ 0} denote the complex upper half plane. For any
positive integer N , we have a congruence subgroup

(4.1) Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
⊂ SL2(Z).

For any Dirichlet character ε : (Z/NZ)× → C× and any positive integer k, we have
the (finite-dimensional) C-vector space Sk(N, ε) of cusp forms in Γ0(N) with weight
k and nebentypus ε, i.e., the space of functions f : H → C vanishing at all cusps of
Γ0(N)\H such that

(4.2) f
(

az+b
cz+d

)
= f(z)(cz + d)kε(d) for all

(
a b
c d

)
∈ Γ0(N).

We also denote S2(N) := S2(N,χtriv), where χtriv(a) = 1 for all a.
Each function f ∈ S2(N,χ) has a q-expansion f(z) =

∑
n≥1 anq

n, where

q = e2πiz. For any prime ℓ, one can reduce modular forms modulo ℓ by taking any
mapping from Q to Fℓ and reducing the q-expansion coefficients along the mapping.
This gives a modulo ℓ-modular form f =

∑
n≥1 anq

n where an ∈ Fℓ.
We now state Serre’s modularity conjecture.

Theorem 4.3 (Serre’s modularity conjecture, [KW09]). Suppose ρ : Gal(Q/Q) →
GL2(Fℓ) satisfies

• ρ is irreducible.
• ρ is odd, i.e., det ρ(c) = −1, where c is the complex conjugation map.
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12 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

Then there exist positive integers N = N(ρ), k = k(ρ), a character ε = ε(ρ) :
(Z/NZ)× → C×, and a modulo ℓ modular form f ∈ Fℓ[[q]] arising from Sk(N, ε)
with coefficients in Fℓ such that ap ≡ tr ρ(Frobp) (mod p) for all p not dividing N .

[Ser87] gives an explicit recipe for determining N(ρ), ε(ρ), and k(ρ). We will
not reproduce the full definitions here, but it is important to note that they satisfy
det ρ = ε(χℓ)

k−1 and k ∈ [2, ℓ2 − 1].

4.2. Modularity of the Representation. Let Y be a genus 2 curve and ℓ
be a prime such that there exists a Galois-stable subgroup H ⊆ Jac(Y )[ℓ]. Let
VY = Jac(Y )[ℓ]. We now use Serre’s modularity conjecture to study the Gal(Q/Q)-
module structure of H⊥/H.

Since H is Gal(Q/Q)-stable, by Galois-equivariance of the Weil pairing, we
deduce that H⊥ is Gal(Q/Q)-stable. Thus, the action of Gal(Q/Q) onto H⊥/H
is well-defined and thus induces the 2-dimensional mod ℓ-representation ρH⊥/H :

Gal(Q/Q) → GL(H⊥/H). First, we have the following result about determinant.

Proposition 4.4. For any σ ∈ Gal(Q/Q), we have

(4.5) det(ρH⊥/H(σ)) = χℓ(σ),

where χℓ : Gal(Q/Q) → Fℓ is the cyclotomic character, determined by the action of
the primitive ℓ-th root of unity.

Proof. Consider the Gal(Q/Q)-invariant filtration 0 ⊂ H ⊂ H⊥ ⊂ VY , which
has successive quotients are H, H⊥/H, and VY /H

⊥. Therefore, we deduce that

(4.6) det(σ|H) det(σ|H⊥/H) det(σ|VY /H⊥) = det(σ|VY
) = χℓ(σ)

2.

However, by Galois equivariance of the Weil pairing, det(σ|H) det(σ|VY /H⊥) =
χℓ(σ), so it follows that det(ρH⊥/H(σ)) = det(σ|H⊥/H) = χℓ(σ). □

Plugging the complex conjugation map c into Proposition 4.4, we see that
det ρH⊥/H(c) = χℓ(c) = −1, so ρH⊥/H is odd. Thus, if we assume that ρH⊥/H is
irreducible, then by Serre’s modularity conjecture and the previous lemma, ρH⊥/H

is modular with trivial nebentypus. The next proposition then restricts the level.

Proposition 4.7. Assume that ρH⊥/H is irreducible. Then, the level N(ρH⊥/H)
divides NY .

Proof. We claim that the conductor divides the conductor of the representa-
tion ρ : Gal(Q/Q) → GL(VY ), which in turn divides the conductor of Y .

To prove this, note that it suffices to show that νp(N(ρH⊥/H)) ≤ νp(N(ρY ))

for all primes p. Recall from [Ser87] that the exponents of p in the conductors are
defined by

νp(N(ρH⊥/H)) =
∑
i≥0

|Gi|
|G0|

dim(H⊥/H)Gi(4.8)

νp(N(ρY )) =
∑
i≥0

|Gi|
|G0|

dim(VY )
Gi ,(4.9)

where Gi are p-adic ramification groups (with lower numbering) and V G is the
subspace of V fixed by G.
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GLUING GENUS 1 AND GENUS 2 CURVES ALONG ℓ-TORSION 13

Thus, it suffices to show that for any subgroup G ⊂ Gal(Q/Q), we have
dim(H⊥/H)G ≤ dim(VY )

G.
Consider the Gal(Q/Q)-invariant filtration 0 ⊂ H ⊂ H⊥ ⊂ VY , which has

successive quotients H, H⊥/H, and VY /H
⊥, respectively. For any subgroup G ⊂

Gal(Q/Q), we have

(4.10) dimHG + dim(H⊥/H)G + dim(VY /H
⊥)G = dim(VY )

G,

so dim(H⊥/H)G ≤ dim(VY )
G, as desired. □

We now determine the weight of the representation.

Theorem 4.11. Assume that ρH⊥/H is irreducible (hence modular) and ℓ does not
divide NY . Then, ρH⊥/H is modular with weight 2.

Proof. By [Ser87, Prop. 4], it suffices to show that H⊥/H is a finite Zℓ-group
scheme. Since Jac(Y ) has good reduction modulo ℓ, it follows that Jac(Y )[ℓ] (and
hence both H and H⊥) is a finite Zℓ-group scheme. Finally, by [Ray74, Cor. 3.3.6
(1)] (with e = 1), it follows that H⊥/H is a finite Zℓ-group scheme. □

Corollary 4.12. Assume ρH⊥/H is irreducible. Let

(4.13) k =

{
2 ℓ does not divide NY

ℓ2 + 1 ℓ divides NY .

Then, there exists a modular form f ∈ Sk(NY ) modulo ℓ such that ρf,ℓ ≃ ρH⊥/H .

In particular, if f =
∑∞

n=1 cnq
n is the q-expansion of f , then cp ≡ bp (mod ℓ)

for all primes p not dividing NY .

Proof. In the case that ℓ does not divide NY , this is immediate by Theo-
rem 4.11.

Otherwise, if ℓ divides NY , then the (untwisted) weight of ρH⊥/H is in the

interval [2, ℓ2 + 1] and is ≡ 2 (mod ℓ − 1). Note that by von Staudt–Clausen
theorem, νℓ(Bℓ−1) = −1 (where Bℓ−1 denotes Bernoulli numbers). Thus, the q-

expansion of Eisenstein series Eℓ−1 = 1+ 2(ℓ−1)
Bℓ−1

∑∞
n=1 σℓ−1(n)q

n is congruent to 1

modulo ℓ. Thus, for any modular form f ∈ Sk(NY ) modulo ℓ, the modular form
Eℓ−1f ∈ Sk+ℓ−1(NY ), whose q-expansion in modulo ℓ is the exactly the same as f
in modulo ℓ. Thus, regardless of what the weight of ρH⊥/H is, one can increment the
weight by ℓ− 1 at a time without changing the coefficients modulo ℓ. Hence, there
is a corresponding modular form of weight ℓ2 + 1. This concludes the proof. □

4.3. Finding rational H. In this subsection, we describe a numerical algo-
rithm that can compute the approximate coordinates of H, if it exists.

Recall that the Jacobian of a curve of genus 2 over C is isomorphic to a complex
torus C2/Λ for some four-dimensional lattice Λ. This isomorphism can be con-
structed explicitly. To do so, recall that points on the Jac(Y ) can be parametrized
by {P1, P2} ∈ Sym2 Y . For two chosen base points Q1, Q2 ∈ Jac(Y ), we define the
Abel-Jacobi map

(4.14)

AJQ1,Q2
: Sym2 Y → H0(Y,Ω)/H1(Y,Z) = C2/Λ

{P1, P2} 7→

(∫ P1

Q1

ω1 +

∫ P2

Q2

ω1,

∫ P1

Q1

ω2 +

∫ P2

Q2

ω2

)
,
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14 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

where one picks a basis for ω1, ω2 for differentials H0(Y,Ω); one working basis is
ω1 = dx/y and ω2 = x dx/y if y2 = f(x) is a hyperelliptic model of Y . This
map does not depend on the choice of a path, as we are considering their values
modulo Λ = H1(Y,Z). For more details about this map, we refer the reader to
[Mil08, §1.18]. For our purposes, we take Q1 and Q2 to be ∞ and ∞ or ∞1 and ∞2

according to whether we are using an odd model or an even model. This ensures
that the set {P1, P2} is Galois-invariant.

On this torus, the ℓ-torsion is simply the ℓ4 points in 1
ℓΛ/Λ. For a candidate

subgroup H we may now calculate coordinates and check whether it is rational as
follows.

Algorithm 4.15. Input. A one-dimensional subgroup of the ℓ-torsion of Jac(Y ),
as represented by its coordinates in C2/Λ.

Output. If the algorithm recognizes H as Galois-stable, output true. If the
algorithm recognizes H as Galois-nonstable, output false. Otherwise, output
unknown.

(1) Let the nonzero points in H be P1, P2, . . . , Pℓ−1.
(2) For each i from 1 to ℓ− 1, pull back Pi to a point on Sym2 Y . Define

(4.16) fi(T ) :=

{
(T − xi,1)(T − xi,2) if Pi 7→ {(xi,1, yi,1), (xi,2, yi,2)} ∈ Sym2 Y

T − xi if Pi 7→ {(xi, yi)} ∈ Sym2 Y.

(3) Compute f(T ) :=
∏ℓ−1

i=1 fi(T ).
(4) If any coordinate has a recognizably nonzero complex part, output false.
(5) Run a rational recognition algorithm over the coefficients of f . If the

coefficients are successfully recognized as rational numbers, then we verify
that this is correct by computing coordinate of P1 (which will lie in an
field extension of Q of degree at most 4(ℓ − 1)) and check that ℓP1 = 0.
If this test passes, output true. Otherwise, output unknown.

This algorithm works because if H is Galois-stable, the list of x-coordinates
collected in step 2 must be Galois-stable as well, meaning f(T ) must have rational
coefficients.

We note that this algorithm does not always return true or false, even if the
precision is sufficiently high. If the precision is sufficiently high and the algorithm
still returns unknown, then H is probably Galois-nonstable.

4.4. Proving Isomorphism. One notable property of modular forms is that
if the first few coefficients (up to the Sturm bound [Stu87]) of two modular forms
are congruent modulo ℓ, then all coefficients of those modular forms are congruent.
Combining this fact with the modularity of ρH⊥/H gives an algorithm to determin-
istically prove the isomorphism between two mod-ℓ Galois representations ρH⊥/H

and ρX . The algorithm mirrors [KO92, Prop. 4], which is used to prove mod-ℓ
congruences between elliptic curves. We now describe a version of this algorithm
in our setting of genus 2 curves.

Algorithm 4.17. Input.

• An elliptic curve X (with conductor NX), a prime ℓ ≥ 3,
• A genus 2 curve Y (with conductor NY )
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• The coordinate of a generator of one-dimensional Gal(Q/Q)-stable sub-
group H ⊂ Jac(Y )[ℓ] (given by their minimal polynomials) such that
ρH⊥/H is irreducible.

Output. true if ρH⊥/H ≃ ρX and false otherwise.

(1) Compute the level M and the Sturm’s bound B by

M = lcm

NX , NY

∏
prime p
p|NY

p


B = k

12µ(M) = k
12M

∏
prime p
p|M

(
1− 1

p

)
,

(4.18)

where k is defined in (4.13).
(2) For each prime p ≤ B not dividing NY , do the following.

• Compute the action of Frobp acting onH, which will be mutiplication
by some t ∈ F×

ℓ . (This can be done in a finite extension of Fp.)
• Compute bp (defined in (3.7)) by (cf. (3.8))

bp = ap,Y − t− p

t
.

• If p does not divide NX , check whether bp ≡ ap,X (mod ℓ).
• IfX has a multiplicative reduction modulo p, check whether bpap,X ≡
p+ 1 (mod ℓ).

Return true if the condition above is satisfied for all p ≤ B and false

otherwise.

It is worth noting that this algorithm is only feasible when the conductor of
Y is very small: if the conductor NY is squarefree, then the algorithm requires
checking at least N2

Y traces. Most genus two curves have conductor at least 1000,
so this algorithm is only feasible for curves with very small conductor.

Remark 4.19. To certify irreducibility of ρH⊥/H , we do the following: first enu-

merate the set X of characters ε : Gal(Q/Q) → F×
ℓ that has conductor dividing D

(where D is in Proposition 3.3). Then, for each prime p ≤ B for which Y has good
reduction, eliminate any character χ ∈ X such that bp ̸≡ ε(p) + p

ε(p) (mod ℓ). If it

happens that X = ∅, we can conclude that H is irreducible.

Proof of Correctness of Algorithm 4.17. If ρH⊥/H ≃ ρX , then by Propo-

sition 3.10, the conditions in step (4) are all satisfied, so the algorithm returns true.
Thus, it suffices to show that if the conditions in step (4) are all satisfied, then
ρH⊥/H ≃ ρX .

By the Modularity Theorem [BCDT01, Thm. A], let f ∈ S2(Γ0(NX)) be the
modular form corresponding to ρX . By the weight-incrementing argument in the
proof of Corollary 4.12, there is a modular form f ∈ Sk(Γ0(NX)) that has the same
reduction modulo ℓ as f . By Corollary 4.12, let g ∈ Sk(Γ0(NY )) be the modular
form corresponding to ρH⊥/H .

For any modular form h, we let N(h) be the level of h (i.e., the smallest positive
integer such that h ∈ Sk(Γ0(N(h)))). Recall that the corresponding L-function of
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16 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

h is

Lh(s) =
∑
n≥1

cnn
−s.

Then we define

Fp,h(T ) =

∞∑
n=0

cpnTn.

If h is an eigenform, then by properties of Hecke operators (see [DS05, Thm. 5.9.2]),
then we have

(4.20) Lh(s) =
∏

p prime

Fp,h(T ), Fp,h(T ) =

{
(1− cpT )

−1 if p | N
(1− cpT + pT 2)−1 if p ∤ N.

Let Rd : Sk(Γ0(N)) → Sk(Γ0(Nd)) denote the operator that takes a function
h to another function τ 7→ h(dτ). Note that the L-function corresponding to Rdh
is d−sLh(s). Thus, for any polynomial P , the L-function corresponding to P (Rd)h
is P (d−s)Lh(s). By comparing individual L-factors, we have

LP (Rp)h =
∏

q prime

Fq,P (Rp)h(T ), and(4.21)

Fq,P (Rp)h(T ) =

{
Fq,h(T ) if q ̸= p

P (T ) · Fp,h(T ) if q = p
.(4.22)

For each prime p ≤ B, we define operators Up that will be applied to f and Vp that
will be applied to g so that

(i) the L-factors of Upf and Vpg at p are equal,
(ii) the L-factors of Upf and Vpg at all primes q ̸= p remain unchanged, and
(iii) for any prime p, νp(Upf) and νp(Vpg) are at most νp(M).

(Up and Vp can depend on f and g.) We define those by splitting into four cases.

(1) If p divides NY . Then, we define

Up = Fp,f (Rp) and Vp = Fp,g(Rp),

so by applying (4.22) twice, we have

Fp,Upf (T ) = Fp,f (T ) · Fp,f (T )
−1 = 1,

Fp,Vpg(T ) = Fp,g(T ) · Fp,g(T )
−1 = 1,

verifying (i). Moreover, degFp,f = max(2 − νp(NX), 0) by considering
reduction types of X, so

νp(N(Upf)) ≤ νp(NX) + degFp,f = max(2, νp(NX)).

Similarly, degFp,g = 1, so we have

νp(N(Vpg)) ≤ νp(NY ) + 1.

Therefore, both νp(N(Upf)) and νp(N(Vpg)) are at most νp(M), verifying
(ii).

(2) If p does not divide either NX or NY . Then, we have Fp,f (T ) = (1−
ap,XT+pT 2)−1 and Fp,g(T ) = (1−bpT+pT 2)−1, which are automatically
congruent modulo ℓ. Thus, we can define Up = Vp = 1, so the levels of
Upf and Vpg are not divisible by p. Both (i) and (ii) are then satisfied.
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GLUING GENUS 1 AND GENUS 2 CURVES ALONG ℓ-TORSION 17

(3) If p does not divide NY and νp(NX) = 1. Then, we have Fp,f (T ) =
(1− ap,XT )

−1 and Fp,g(T ) = (1− bpT +T 2)−1. The fact that ap,X = ±1,
and the ap,Xbp ≡ p+1 (mod ℓ) implies that 1−ap,XT divides 1−bpT+pT 2

in Fℓ[T ]. Let the quotient be 1− cT for c ∈ Fℓ. Then, we define

Up = 1 and Vp = 1− cRp,

so that by (4.22), we have Fp,Upf (T ) = Gp,Upf (T ) = (1 − ap,XT )
−1,

verifying (i). Moreover, νp(N(Upf)) = νp(NX) = 1 and νp(N(Vpg)) ≤ 1,
verifying (ii).

(4) If p does not divide NY and νp(NX) ≥ 2. Then, the L-factors at p of
f and g are 1 and (1− bpT + T 2)−1. Thus, we define

Up = 1 and Vp = 1− bpRp +R2
p,

so from (4.22), we have Fp,Upf (T ) = Fp,Upg = 1, verifying (i). Moreover,
νp(N(Upf)) = νp(NX) and νp(N(Upg)) ≤ 2, both are at most νp(M).

Now, let U =
∏

p≤B Up and V =
∏

p≤B Vp. Hence, we have that

• For all primes p ≤ B, the L-functions corresponding to Uf and V g can
be expressed as an Euler product, and the L-factors at p of Uf and V g
are equal.

• Both Uf and V g are in Sk(Γ0(M)) for M defined in (4.18).

Thus, the coefficients of 1, q, q2, . . . , qB in the q-expansions of the modular forms
Uf and V g are congruent modulo ℓ. Hence, by Sturm’s theorem [Stu87, Thm. 1],
we get that Uf and V g are congruent modulo ℓ. This means that ap ≡ bp (mod ℓ)
for every prime p ∤M .

Thus, for any prime p, the matrices ρH⊥/H(Frobp) and ρX(Frobp) are conjugate.

By the Chebotarev’s density theorem, for any σ ∈ Gal(Q/Q), one can select p
such that σ and Frobp are conjugate, and so ρH⊥/H(σ) and ρX(σ) are conjugate

for any σ ∈ Gal(Q/Q). Thus, by the Brauer–Nesbitt theorem, ρH⊥/H and ρX
are isomorphic up to semisimplification. However, since we assumed ρH⊥/H is
irreducible, it follows that ρH⊥/H ≃ ρX . □

4.5. The Reducible Case. In the case that ρH⊥/H is reducible, we cannot use
the algorithm above because ρH⊥/H is not necessarily modular. Even if ρH⊥/H were
modular, we can only use Algorithm 4.17 to show that ρH⊥/H and ρX are isomorphic

up to semisimplification. An algorithm using modular polynomials similar to [CF22,
§3.6.] does not extend well to genus 2 curves due to the unwieldy nature of modular
polynomials in genus 2. One might need to resort to explicitly computing ρH⊥/H .

5. Checking the Antisymplectic Condition

Throughout this section, let X and Y be curves of genus 1 and genus 2, respec-
tively, and let ℓ be a prime such that

• there is a Galois-stable 1-dimensional subspace H ⊆ Jac(Y )[ℓ]; and
• there is a Gal(Q/Q)-module isomorphism ϕ : H⊥/H → Jac(X)[ℓ].

Then, the only condition left to verify before we can glue X and Y is that ϕ is
antisymplectic, i.e., for any P,Q ∈ H⊥/H, we have eℓ(ϕ(P ), ϕ(Q)) = eℓ(P,Q)−1.
If ℓ = 2, then this condition is tautological. Hence, we assume ℓ is odd for the
remainder of this section.
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18 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

If the image of the mod-ℓ representation ρH⊥/H : Gal(Q/Q) → GL(H⊥/H)
is sufficiently nice, we may still be able to determine whether this condition holds
even before trying to glue those curves. We will adapt the method in [FK22] to do
so.

5.1. Symplectic Type. If ϕ : H⊥/H → Jac(X)[ℓ] is a Galois module iso-
morphism, then there exists a constant α ∈ F×

ℓ such that for any P,Q ∈ H⊥/H,
we have

(5.1) eℓ(ϕ(P ), ϕ(Q)) = eℓ(P,Q)α

because α is simply the determinant of ϕ under a suitable basis. Note that if we
replace ϕ by [t] ◦ ϕ where t ∈ Z (which is still a Galois module isomorphism), then
α becomes αt2. We thus define the symplectic type of ϕ to be the image of α in
F×
ℓ /(F

×
ℓ )

2 ≃ {±1}. If the image is +1, then ϕ has positive symplectic type , and
if the image is −1, then ϕ has negative symplectic type .2 This terminology is
not to be confused with symplectic and antisymplectic.

Proposition 5.2. Suppose ℓ ≡ 1 (mod 4) (resp. ℓ ≡ 3 (mod 4)). Then, there
exists an antisymplectic Gal(Q/Q)-module isomorphism ϕ : H⊥/H → Jac(X)[ℓ] if
and only if there exists a Gal(Q/Q)-module isomorphism ψ : H⊥/H → Jac(X)[ℓ]
of positive (resp. negative) symplectic type.

Proof. Both statements follow from the fact that −1 ∈ (F×
ℓ )

2 if and only if
ℓ ≡ 1 (mod 4). □

From Proposition 5.2, it suffices to determine whether a Gal(Q/Q)-module
isomorphism we have is of positive or negative symplectic type. It is possible
that there is a Gal(Q/Q)-module isomorphism of positive symplectic type and a
Gal(Q/Q)-module isomorphism of negative symplectic type at the same time. By
[FK22, Thm. 15], this happens if and only if the image of mod ℓ-representation
ρX,ℓ(Gal(Q/Q)) is abelian and not the subgroup generated by a conjugate of ( a 1

0 a ) ∈
GL2(Fℓ) for some a ∈ F×

ℓ .

5.2. A Local Test for Symplectic Type. In the case when the symplectic
type is unique, we do not have a general algorithm for determining the symplectic
type given H⊥/H and X. However, if there exists σ ∈ Gal(Q/Q) which acts on
Jac(X)[ℓ] by a non-diagonalizable matrix (i.e., conjugate of ( a 1

0 a ) for some a ∈ F×
ℓ ),

then this element σ could be used to determine the symplectic type, as detailed in
the following proposition, which is a variant of [FK22, Thm. 16].

Proposition 5.3. Let ⟨•, •⟩ : F2
ℓ×F2

ℓ → Fℓ be a non-degenerate alternating bilinear
pairing. Let M ∈ GL2(Fℓ) be a non-diagonalizable matrix. Then, as v varies
through F2

ℓ , then ⟨v,Mv⟩ does not depend on v up to multiplication by a square.

Proof. Without loss of generality, change the basis so that M = ( a 1
0 a ). Also,

scale the inner product by a constant so that
〈
( xy ) ,

(
x′
y′
)〉

= xy′ − yx′. If v = ( xy ),
then

(5.4) ⟨v,Mv⟩ =
〈(

x
y

)
,

(
ax+ y
ay

)〉
= axy − (axy + y2) = −y2,

giving the desired conclusion. □

2[FK22] and [CF22] call positive and negative symplectic type symplectic and antisymplectic
isomorphism, respectively. We choose a different terminology to avoid confusion.
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GLUING GENUS 1 AND GENUS 2 CURVES ALONG ℓ-TORSION 19

In the case of the ℓ-torsion of an elliptic curve X, if there exists σ ∈ Gal(Q/Q)
acting on Jac(X)[ℓ] by a non-diagonalizable matrix, then by Proposition 5.3, the
Weil pairing eℓ(P, σ(P )) is either 1 or does not depend on P ∈ Jac(X)[ℓ] (up to
multiplication by a square in F×

ℓ ).

Similarly, σ acts on H⊥/H by the same matrix, so by Proposition 5.3 again,
the Weil pairing eℓ(Q, σ(Q)) is either 1 or does not depend on Q ∈ H⊥/H (up to
multiplication by a square in F×

ℓ ). If P = ϕ(Q), then

(5.5) eℓ(P, σ(P )) = eℓ(ϕ(Q), σ(ϕ(Q))) = eℓ(ϕ(Q), ϕ(σ(Q))) = eℓ(Q, σ(Q))α,

where α is the symplectic type. Thus, comparing the nontrivial values of eℓ(P, σ(P ))
and eℓ(Q, σ(Q)) for any P ∈ Jac(X)[ℓ] and Q ∈ H⊥/H determines the symplectic
type.

To compute this, we note that there exists a prime p for which Frobp and σ are
in the same conjugacy class by the Chebotarev’s density theorem. Thus, we may
take the reduction of both curves modulo p and consider their equations in Fp. Let
σ = Frobp. The following Lemma 5.6 shows that all torsion points are contained
in a field extension of degree only O(ℓ2).

Lemma 5.6. Suppose that p is a prime such that the action of Frobp on Jac(X)[ℓ]
(and hence on H⊥/H) is a non-diagonalizable matrix. Then, we have

Jac(X)Fp
[ℓ] = Jac(X)F

pℓ(ℓ−1)
[ℓ] and(5.7)

Jac(Y )Fp
[ℓ] =

{
Jac(Y )F

pℓ(ℓ−1)
[ℓ] if ℓ ̸= 3

Jac(Y )Fp18
[ℓ] if ℓ = 3

(5.8)

Proof. Suppose that the action of Frobp on Jac(X)Fp
[ℓ] is conjugate to

( γ 1
0 γ

)
for some γ ∈ Fℓ. We compute the order of Frobp in both torsion fields.

• For X, by the condition, Frobp is conjugate to
( γ 1
0 γ

)
. The n-th power of

this is
(

γn nγn−1

0 γn

)
, which is congruent modulo ℓ to the identity matrix

when n = ℓ(ℓ− 1).
• For Y , we have that Frobp must act on Jac(Y )Fp

[ℓ] by matrix with eigen-

values α, β, γ, γ, all in Fℓ, where α and β are the eigenvalues corresponding
to H and Jac(Y )Fp

[ℓ]/H⊥. In particular, we deduce that (Frobp)
ℓ−1 − 1

has all eigenvalues 0, and hence is a nilpotent matrix.
In particular, if no Jordan block of Frobp has size greater than ℓ, then

(5.9) 0 =
(
(Frobp)

ℓ−1 − 1
)ℓ

= (Frobp)
ℓ(ℓ−1) − 1,

where the second equality holds because we are working in modulo ℓ. The
only case that the previous sentence does not cover is when k = 4 and
ℓ = 3 (i.e., Frobp is a single Jordan block), in which case the order is 18.

Thus, every element in Jac(X)Fp
[ℓ] and Jac(Y )Fp

[ℓ] is fixed by (Frobp)
ℓ(ℓ−1) (or

(Frobp)
18 for Jac(Y )Fp

[ℓ] and ℓ = 3), completing the proof. □

Remark 5.10. In the version of Algorithm 5.11 given below, we will consider only
the case in which α and β are both distinct from γ, in which case one needs to
consider only Fpℓ(ℓ−1) even for ℓ = 3.
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20 PITCHAYUT SAENGRUNGKONGKA AND NOAH WALSH

5.3. Algorithm for Determining Symplectic Type. With all the tools
developed in Section 5.2, we now describe an algorithm to determine the symplectic
type on some of the curves.

Algorithm 5.11. Input. Two curves X and Y of genus 1 and genus 2 for which a
one-dimensional Galois-stable H ⊆ Jac(Y )[ℓ] exists and there exists a Gal(Q/Q)-
module isomorphism ϕ : H⊥/H → Jac(X)[ℓ].

Output. Either positive or negative symplectic type of ϕ or fail, which
occurs if the image ρH⊥/H does not contain a non-diagonalizable matrix.

(1) Find a prime p such that a2X,p ≡ 4p (mod ℓ). Then, check that the

matrix Frobp |Jac(X)[ℓ] is not diagonalizable by testing if the order of
Frobp |Jac(X)[ℓ] does not divide ℓ− 1.

If one cannot find p after a sufficiently many trials, then the image of
Galois representation likely does not have a non-diagonalizable element,
so return fail.

Once we found p, consider curves X and Y over Fpℓ(ℓ−1) .
(2) Pick a random point P ∈ Jac(X)[ℓ] and then compute w1 := eℓ(P,Frobp(P )).

Repeat until this result is not 1.
(3) Determine the characteristic polynomial of Frobp |Jac(Y )[ℓ]. Write it in the

form (T−α)(T−β)(T−γ)2 ∈ Fℓ[T ] such that (T−γ)2 is the characteristic
polynomial of Frobp |Jac(X)[ℓ].

If α = β = γ, repeat (1) again with larger primes.
(4) Pick a random pointR ∈ Jac(Y )[ℓ]. ComputeQ = (Frobp −α)(Frobp −β)(R).

Then, compute w2 := eℓ(Q,Frobp(Q)). Repeat until this result is not 1.

(5) If w1 = wt2

2 for some t ∈ F×
ℓ , then return positive. Otherwise, return

negative.

Remark 5.12. In step (1), by the Chebotaraev density theorem, the density of
such p is at least (ℓ−1)/|GL2(Fℓ)| = Ω(1/ℓ3). Since ℓ is generally small (practically,
ℓ ≤ 19), it is not difficult to obtain p by trying the first few primes.

Remark 5.13. Each attempt in both randomized steps fails with a low probability.
More specifically, one can show that the probability that each attempt of both steps
(2) and (4) fails is 1

ℓ . (For step (4), note that αβ = γ2 = p, so both α and β are
distinct from γ.)

Proposition 5.14. Algorithm 5.11 correctly determines the symplectic type (if it
does not return fail).

Proof. It suffices to show that Q ∈ H⊥. Then, the correctness follows from
(5.5).

To do that, assume without loss of generality that Frobp acts on H by multi-
plication by α. We define

(5.15) V = Ker(Frobp −β)(Frobp −γ)2.
Since V is a span of the three columns corresponding to β, γ, γ in the Jordan block
decomposition, we deduce that dimV = 3. Moreover, the action of Frobp on H⊥

has characteristic polynomial (T − β)(T − γ)2, so we have H⊥ ⊆ V . Comparing
dimensions gives H⊥ = V . Finally, we note that

(5.16) (Frobp −β)(Frobp −γ)2Q = (Frobp −α)(Frobp −β)2(Frobp −γ)2R = 0,

so Q ∈ H⊥ as desired. □
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This algorithm is generally able to handle ℓ ∈ {3, 5, 7} in a few seconds.

6. Gluing Curves

Given a genus 2 curve Y , we wish to find a prime ℓ and a genus 1 curve X to
which it can be glued, and then compute the resulting gluing. In this section, we
will give a concrete description of our workflow for finding X and computing the
gluing. For simplicity, we only look for curves Y such that the Galois representation
corresponding to H⊥/H is irreducible. We then give a demo of how the steps pan
out on a particular curve.

Our workflow starts with a genus 2 curve Y . Because attempting to compute
gluings is time-consuming, we first narrow down the possibilities for ℓ and X as
described in sections 6.1 and 6.2. We then attempt to analytically construct gluings
for each of the remaining possibilities in section 6.3. The implementation of the
workflow described in this section is available at [SW25b].

6.1. Determining ℓ. First, as specified by Theorem 2.8 we must find ℓ for
which some H ⊂ Jac(Y )[ℓ] is Galois-stable. We use Algorithm 3.6 to find all
possible ℓ for which this holds, possibly along with some spurious ℓ which do not
work.

6.2. Determining X. Once ℓ is restricted to some finite set, we fix some ℓ.
We assume that H as in Theorem 2.8 exists. We wish to find X such that some ψ
as in Theorem 2.8 exists.

Each of the Gal(Q/Q)-stable subgroups H corresponds to a trace function that
takes a prime number p and output bp, the trace of H⊥/H. We use Algorithm 3.9
to recover all possible trace functions. (If it reports no trace function, this means
that no such H exists.) For each such test function p 7→ bp, we query the LMFDB
all elliptic curves X over Q that satisfies the conditions of Proposition 3.10 for all
primes p ≤ 100. This leaves us with a list of potential elliptic curves.

Next, given a potential X and Y , one can rule out most cases where ϕ has the
wrong symplectic type by applying Algorithm 5.11.

Once we have at least one elliptic curve X for which H⊥/H and Jac(X)[ℓ] have
antisymplectic Gal(Q/Q)-module isomorphism, it is possible to characterize all of
them. We have the following lemma.

Lemma 6.1. Let X be as in the above paragraph. Then, for any elliptic curve X ′,
the following are equivalent:

(i) there exists an antisymplectic Gal(Q/Q)-module isomorphism H⊥/H
∼→

Jac(X ′)[ℓ]
(ii) there exists a symplectic Gal(Q/Q)-module isomorphism between Jac(X)[ℓ]

and Jac(X ′)[ℓ].

Proof. Let ϕ : H⊥/H → Jac(X)[ℓ] be a Gal(Q/Q)-module isomorphism. To
prove that (i) implies (ii), let ϕ′ : H⊥/H → Jac(X ′)[ℓ]. Then, the map ψ = ϕ′ ◦
ϕ−1 : Jac(X)[ℓ] → Jac(X ′)[ℓ] is a Gal(Q/Q)-module isomorphism. It is symplectic
because for any P,Q ∈ Jac(X)[ℓ],

eℓ(P,Q) = eℓ(ϕ
−1(P ), ϕ−1(Q))−1

= eℓ
(
ϕ′(ϕ−1(P )), ϕ′(ϕ−1(Q))

)
= eℓ(ψ(P ), ψ(Q)).

(6.2)
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In the direction (ii) implies (i), given ψ : Jac(X)[ℓ] → Jac(X ′)[ℓ], then we can
construct ϕ′ by ϕ′ = ψ ◦ ϕ. One can similarly see that ϕ′ is antisymplectic. □

Thus, given such an X, the problem of finding all such X ′ is reduced to finding
an elliptic curve ℓ-congruent toX with positive symplectic type. When ℓ ∈ {2, 3, 5},
the moduli space of all such X ′ is a curve of genus 0, which has been worked out
in [RS01] and [RS95]. When ℓ ≥ 7, the moduli space of X ′ is a curve of genus at
least 3. By Falting’s theorem, any curve of genus greater than 1 has finitely many
rational points. Thus, for ℓ ≥ 7, there will be only finitely many such X ′ defined
over Q. Still, the equation for the curve of all possible X ′ has been worked out for
ℓ ∈ {7, 11} in [Fis14].

Remark 6.3 (The reducible case). In the case where the Galois representation
corresponding to H⊥/H is reducible, following the above steps above is not enough
to filter the list of elliptic curves and reduce it to a list of manageable size. For
example, starting with the curve 961.a.961.1 in the LMFDB and ℓ = 5 leaves
3083 potential elliptic curves. This is because Frobenius traces can only prove that
ρX and ρH⊥/H are isomorphic up to semisimplification.

There are two possible strategies that we can use to narrow this list down
further. Suppose that X is an elliptic curve such that ρX ≃ ρH⊥/H .

(1) Discriminant. Suppose that p is a prime not dividing NY such that X
has a multiplicative reduction modulo p. Thus, the Galois representation
ρX should be unramified at p, and so by using the theory of Tate’s curve,
one can deduce that ℓ divides νp(∆min(X)) (where ∆min denotes the min-
imal discriminant). Thus, we can rule out a large number of potential
elliptic curves for which this condition does not hold.

(2) Diagonal Matrix. Let p be a prime such that ρY (Frobp) is a diagonal
matrix in GSp4(Fℓ), then ρX(Frobp) is also a diagonal matrix in GL2(Fℓ).
Thus, one can find such primes p and use them to rule of the elliptic curves
further.

Running these two strategies on the curve 961.a.961.1 (with primes 1301, 2351,
4211, 5171, 16001, 17881, 24371, 31181, 35531, 36451, 37361, 45751 in Step (2))
reduces the number of candidates to only 9. However, this does not work very well
on some other curves, especially with ℓ = 3, due to the sheer number of candidates
and the rarity of primes p in Step (2).

6.3. Computing a Gluing. The computation of gluing is based on the nu-
merical algorithm in [HSS21, §2.1] and the code from [HSS20]. However, we made
several optimizations. First, in the step of computing the curve invariants from
lattice (Step (4) in Algorithm 6.4 below), we replace the original theta function
algorithm with a faster implementation from FLINT [EK24]. Second, the original
code repeatedly tests a random maximal isotropic subgroup of Jac(X)[ℓ]×Jac(Y )[ℓ].
However, this proves to be inefficient since there are Θ(ℓ6) such subgroups [HSS21,
Cor. 1.20].

To optimize this, we propose the following two-step approach to search for the
desired subgroup.

(1) Determine which one-dimensional subgroups H are rational.
(2) Determine which antisymplectic isomorphism ϕ : Jac(X)[ℓ] → H⊥/H

gives rise to a gluing.
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This gives the following algorithm.

Algorithm 6.4. Input. An elliptic curve X, a genus 2 curve Y , and a prime ℓ.
Output. A (possibly empty) list of all genus 3 curves Z defined over Q such that

Jac(Z) ∼ (JacX×JacY )/G for some maximal isotropic subgroup G ⊂ Jac(X)[ℓ]×
Jac(Y )[ℓ].

(1) Compute the period matrix of Y , giving a basis {P1, P2, P3, P4} of the
lattice Λ such that Jac(Y ) ≃ C2/Λ.

(2) For each ratio (a1 : a2 : a3 : a4) ∈ P3(Fℓ), test whether the subgroup H
generated by the torsion point a1

ℓ P1 +
a2

ℓ P2 +
a3

ℓ P3 +
a4

ℓ P4 is Gal(Q/Q)-
stable by using Algorithm 4.15.

(3) For each H determined to be Gal(Q/Q)-stable in (2), enumerate all anti-
symplectic isomorphisms ϕ : Jac(X)[ℓ] → H⊥/H.

(4) For each such ϕ, use (ϕ,H) to generate the isotropic subgroup G according
to [HSS21, Prop. 1.18]. Compute a period matrix of the lattice Jac(X)×
Jac(Y )/G.

(5) From this lattice, compute the Diximier-Ohno invariants using [KLLRSS18]
or Shioda invariants using [BILV16] and test whether they are defined over
Q or not.

(6) For any set of invariants that are in Q, reconstruct the curve Z using
the methods in [HSS21, Alg. 2.21] for plane quartics or [BILV16] for
hyperelliptic curves.

In Step (2), there are #P3(Fℓ) = ℓ3 + ℓ2 + ℓ+1 = Θ(ℓ3) possible H’s to check.
In Step (3), there are #SL2(Fℓ) = ℓ(ℓ2 − 1) = Θ(ℓ3) isomorphisms to check. Thus,
this algorithm reduces checking Θ(ℓ6) subgroups to checking at most Θ(ℓ3) torsion
points and isomorphisms, making it much more efficient

We implemented this algorithm in Magma V.2.28-16. The timing of this al-
gorithm against simply enumerating all maximal isotropic subgroups is shown in
Table 1. The timing was taken on CPU 12th Gen Intel i9-12900K (24) @5.100GHz
on five different test cases in which one can find a gluing when working with preci-
sion 500. Note that the timing only measures time to compute the (Dixmier-Ohno
or Shioda) invariants and does not include time to reconstruct the curve.

ℓ = 3 ℓ = 5 ℓ = 7
Enumerate all subgroups 144.5 s 5760 s (not attempted)

Using Algorithm 6.4 11.8 s 71.9 s 241 s
Table 1. Time taken to compute invariants of all possible gluings
with precision 500.

6.4. Example. We provide a rundown of our algorithms on a particular curve.

Example 6.5. Let Y be the genus 2 curve y2 + (x3 + x2 + x + 1)y = −x2 − x
(277.a.277.1 in the LMFDB). Running Algorithm 3.6 on this curve yields the
result {3, 5}, meaning that the only possible choices of ℓ are 3 and 5. From now,
suppose we are looking for a (5, 5)-gluing, i.e., ℓ = 5.

We next run Algorithm 3.9 on the input (Y, 5). Since the conductor of Y is
277, which is prime, the algorithm concludes immediately that χ must be trivial,
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i.e., χ(p) = 1 for all p. (This is also reflected by the fact that Y has a rational 5-
torsion subgroup.) Thus, we may compute the Frobenius traces bp of H⊥/H from
the Frobenius traces ap,Y of Y . For example,

FY,13(T ) = T 4 − 3T 3 + 7T 2 − 39T + 169,

aY,13 = 3, and b13 = 3− 1− 13

1
= 4 (mod 5).

(6.6)

We can repeat the above process to compute bp for all primes p ≤ 100. Then, we
search for all elliptic curves in the LMFDB satisfying the trace constraints detailed
in Proposition 3.10. The result is the four curves shown in Table 2.

LMFDB Equation Symplectic Type
X1 1939.b1 y2 + y = x3 − 1916x− 32281 positive
X2 18559.a1 y2 + y = x3 + 11734x− 21208 negative
X3 21883.b1 y2 + y = x3 − 86x− 44420 positive
X4 32963.c1 y2 + y = x3 − 77866x+ 8364065 positive
Table 2. Potential elliptic curves gluable to curve 277.a.277.1

We run the symplectic test in Algorithm 5.11 to test the antisymplectic condi-
tion. Both curves can be tested using p = 19, and the results are shown in Table 2.
Since we are in the case ℓ ≡ 1 (mod 4), by Proposition 5.2, the symplectic test
rules out X2

Thus, our algorithm found the curves X1, X3, and X4. This is not a proof that
these curves are gluable to Y . We can either use Algorithm 4.17 or computing the
gluing explicitly to prove that they actually form a Galois stable maximal isotropic
subgroup G.

For i ∈ {1, 3, 4}, running the code referenced in Section 6.3 on Xi and Y shows
that there are indeed gluings Zi. The invariants of Z1 and Z3 was obtained by
computing at 500-digit precision, while the invariants of Z4 was obtained at 1000-
digit precision. It took about 30 seconds to compute the coordinates a nonzero
point in H and less than 60 seconds to compute the invariants for each of Z1, Z3,
and Z4. However, by far dominating every computation we have done is minimizing
the equations of Z4, which took just over an hour. The minimized equations of Z1,
Z3, and Z4 are given in (6.7), (6.8), and (6.9).

Z1 : 88189x4 − 398531x3y + 7700x3z − 678120x2y2

+ 1444780x2yz + 231034x2z2 + 238603xy3

− 1620885xy2z − 218291xyz2 − 420855xz3 + 82587y4

− 2912900y3z + 333537y2z2 − 959874yz3 − 281678z4 = 0

(6.7)

Z3 : y2 = 448x8 + 3584x7 + 2016x6 − 476x5

− 13020x4 − 16408x3 − 18340x2 − 8988x− 4025
(6.8)
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Z4 : 19351616x4 + 136748535x3y + 106394158x3z

− 235515177x2y2 − 46043175x2yz + 67674485x2z2

− 549641282xy3 + 36999650xy2z − 160500711xyz2

− 36439076xz3 + 272167382y4 + 488584945y3z

− 488728851y2z2 + 152950443yz3 − 115190535z4 = 0

(6.9)

7. Examples

We now report on some examples resulting from the search process in Section 6.
As in Section 6.3, the amount of time to compute a gluing is defined to be the
time taken to compute Diximier-Ohno invariants or Shioda invariants. It does not
include time to reconstruct or minimize the curve. All timings were done on CPU
12th Gen Intel i9-12900K (24) @5.100GHz.

7.1. Gluing Along Large Torsion. Our work allows us to look for gluings
along ℓ-torsion for larger ℓ.

We first note that for ℓ ∈ {7, 11, 13, 17, 19, 37, 43, 67, 163} (i.e., all ℓ ≥ 7 for
which there exists an ℓ-isogeny of elliptic curves, by Mazur’s isogeny theorem
[Maz78, Thm. 1]), one can construct infinitely many gluable candidates of genus 1
and genus 2 curves. Here, a gluable candidate is a pair of curves (X,Y ) such that
X has genus 1, Y has genus 2, and there exists a Galois stable maximal isotropic
subgroup G ⊂ Jac(X)[ℓ]×Jac(Y )[ℓ]. As noted in Remark 2.10, a gluable candidate
does not necessary produce a gluing.

There is an easy (and not very interesting) way to construct those gluable
candidates. We will construct pairs of elliptic curve X and genus 2 curve Y such
that

• Y is isogenous to a product of two elliptic curves Y1 × Y2;
• Y1 has an ℓ-isogeny; and
• Jac(X)[ℓ] and Jac(Y2)[ℓ] are isomorphic as Gal(Q/Q)-modules.

Call a gluable candidate (X,Y ) uninteresting if it is of the above form and
interesting otherwise.

Proposition 7.1. For ℓ ∈ {7, 11, 13, 17, 19, 37, 43, 67, 163}, there exists infinitely
many uninteresting gluable candidates (X,Y ) along ℓ-torsion.

Proof. Let p = 2 if ℓ ≡ 1 or 3 (mod 8) and p = 3 if ℓ ∈ {7, 13, 37}. Let Y1 be
an elliptic curve with ℓ-isogeny, and let Y2 be an elliptic curve such that Y2[p] and
Y1[p] are antisymplectically isomorphic as Gal(Q/Q)-modules. There are infinitely
many such Y2 because when p = 2, one can take elliptic curves whose 2-torsion field
is isomorphic to that of Y1, and when p = 3, this follows from [Fis06, §13].

The curves Y1 and Y2 are gluable along p-torsion, producing a curve Y for
which there exists a p-isogeny ϕ : Y1 × Y2 → Jac(Y ). Since ℓ ̸= p, the map ϕ

induces an isomorphism ϕ : Jac(Y1)[ℓ] × Jac(Y2)[ℓ]
∼→ Jac(Y )[ℓ]. This isomor-

phism is antisymplectic because it has degree p (so by properties of Weil pairing,
eℓ(ϕ(P ), ϕ(Q)) = eℓ(P,Q)p), and by our choice of ℓ, the number −p is a quadratic
residue modulo ℓ.

Let X be any elliptic curve such that Jac(X)[ℓ] and Jac(Y2)[ℓ] are isomorphic
as Gal(Q/Q)-modules. In particular, we may take X = Y2. We now show that X
and Y are gluable.
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• Since Y1 has an ℓ-isogeny, there exists a one-dimensional subgroup G ⊂
Jac(Y1)[ℓ]. Then, the image H := ϕ(G × {0}) is a one-dimensional sub-
group of Jac(Y ).

• By Galois equivariance of the Weil pairing, we have H⊥/H = ϕ({0}×Y2).
Since ϕ is antisymplectic, H⊥/H and Jac(Y2)[ℓ] are antisymplectic as
Gal(Q/Q)-modules. □

We thus look for interesting gluable candidates. For ℓ ≥ 11, we considered all
genus 1 and 2 curves in the LMFDB and concluded that there are no interesting
gluable candidates in the LMFDB. Therefore, we use a larger dataset of genus 2
curves provided by Sutherland [Sut22] to obtain the following examples. We check
that the gluing is interesting by computing the geometric endomorphism algebra of
Y using [CMSV19].

Example 7.2 (Interesting gluing along 11-torsion). Let X be an elliptic curve
y2 + xy = x3 +9096x+224832 (966.k1 in the LMFDB). Let Y be a genus 2 curve
y2 + (x2 + x)y = x6 − 3x5 + 9x4 − 5x3 + 12x2 − 6x, which has conductor 19044
and minimal discriminant 1 151 517 855 744. Our code computes a gluing along 11-
torsion of X and Y in 16 minutes with precision 500 digits, and minimizing the
equation of the curve gives

Z : 39753x4 + 89236x3y − 76006x3z − 3537x2y2 − 469x2yz + 46697x2z2

− 2200xy3 + 42003xy2z + 29597xyz2 − 58478xz3

− 4883y4 − 12000y3z − 9287y2z2 − 398yz3 + 6544z4 = 0,

(7.3)

Example 7.4 (Interesting gluing along 13-torsion). Let X be an elliptic curve
y2 + y = x3 + x2 − 208x− 1256 (75.a1 in the LMFDB). Let Y be a genus 2 curve
y2+x3y = −5x4+45x2+9x, which has conductor 151 875 and minimal discriminant
2 883 251 953 125. Our code computes a gluing along 13-torsion of X and Y in 24
minutes under with 1000-digit precision, and minimizing the equation of the curve
gives

Z : y2 = 1008x8 − 4032x7 + 336x6 + 8064x5

+ 9660x4 − 4914x3 − 7434x2 − 2478x+ 2058
(7.5)

7.2. Curves with Interesting Geometric Endomorphism Rings. For
any abelian variety A, the geometric endomorphism ring End(AQ) is the ring

of all endomorphisms A → A defined over Q. For any curve C, its geometric en-
domorphism ring is defined as the geometric endomorphism ring of its Jacobian
End(CQ) := End(JacCQ). The geometric endomorphism algebra of a curve C

is defined as End(CQ)⊗Z Q. If Z is a gluing of X and Y , then the geometric endo-
morphism algebra of Z can be easily determined by the geometric endomorphism
algebra of X and Y . Furthermore, one can verify the endomorphism algebra by the
code in [CMSV19].

Example 7.6. Let X be the elliptic curve y2 = x3 + x2 − 3x + 1 (256.a2 in the
LMFDB). Let Y be the genus 2 curve y2+y = 6x5+9x4−x3−3x2 (20736.l.373248.1
in the LMFDB).

There are two gluings between X and Y with ℓ = 3, whose minimized equations
are given in (7.7) and (7.8).

(7.7) Z : y2 = −210x7 − 630x6 + 245x5 + 1155x4 − 70x3 − 700x2 + 140
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Z ′ : 8x4 − 26x3y + 26x2y2 + 32xy3 − 3y4 + 29x3z − 26x2yz + 234xy2z

− 26y3z + 153x2z2 + 22xyz2 + 17y2z2 + 65xz3 − 250yz3 + 25z4 = 0

(7.8)

One can compute End(XQ)⊗Z Q ≃ Q[
√
−2] and End(YQ)⊗Z Q ≃ B2,3, so

(7.9) End(ZQ)⊗Z Q ≃ End(Z ′
Q)⊗Z Q ≃ Q[

√
−2]×B2,3,

where B2,3 is the unique quaternion algebra over Q ramified at 2 and 3.

Example 7.10. Let X be the elliptic curve y2+xy = x3−x2−107x+552 (49.a2
in the LMFDB) and Y be the genus 2 curve y2+(x2+x)y = x5+x4+2x3+x2+x
(686.a.686.1 in the LMFDB). A gluing of X and Y with ℓ = 3 is given by a
quartic

(7.11) Z : 7x4 + 28x2z2 + 24xy2z + 7y4 − 4z4 = 0.

The Jacobian Jac(Y ) is isogenous to a product of two elliptic curves, one of which
is X, and the other is X ′ in isogeny class 14.a in the LMFDB. Therefore, Jac(Z) ∼
X2 ×X ′. Since are End(XQ)⊗Z Q ≃ Q(

√
−7) and End(X ′

Q)⊗Z Q ≃ Q, we have

(7.12) End(ZQ)⊗Z Q ≃ Mat2(Q(
√
−7))×Q.

7.3. Gluing Curves in the LMFDB. We have applied our algorithms to
every genus 2 curve Y in the LMFDB to identify triples (X,Y, ℓ) such that X and
Y are potentially gluable along ℓ-torsion where one of the following criteria are met:

• ℓ = 3 and H⊥/H is an irreducible Galois module. (If H⊥/H is reducible,
our filtering methods described in Remark 6.3 sult in a large number of
false positives due to sheer number of candidate pairs of curves (X,Y ).)
Our methods identified 3009 genus 2 curves Y for which at least one
candidate X exists.

• ℓ ≥ 5. We have identified 704 pairs of (Y, ℓ) for which at least one candi-
date X exists. The distribution by ℓ is shown in Table 3. Note that all
gluings for ℓ ≥ 11 are uninteresting in the sense of Proposition 7.1. Of
these pairs, 44 curve Y ’s have H⊥/H reducible, all of which comes from
ℓ = 5.

ℓ 5 7 11 13 19 37 67
Number of Y ’s 649 35 11 2 4 2 1

Table 3. Number of Y for which there exists at least one candi-
date of gluable elliptic curves along ℓ-torsion.

For every such (Y, ℓ) such that H⊥/H is irreducible and we are able to run the
symplectic test, we attempt to glue Y to the candidate X which has minimal
conductor. For ℓ = 3 we attempt this even when we cannot run the symplectic
test. The result is shown in Table 4. In all but two cases that we did not find a
gluing, the Jacobian of curve Y splits, in which believe that the cause of failure
comes from that the condition (ii) of Theorem 2.9 does not hold (cf. Remark 2.10).
One further case comes from a pair with the wrong symplectic type on which the
symplectic test did not produce a result. The only other case that we did not find
a gluing is when ℓ = 3, Y is the genus 2 curve labeled 471900.a.943800.1 in the
LMFDB, and X is the elliptic curve 298800.ff.1 in the LMFDB. In this case, the
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Galois representations H⊥/H and X[3] are not isomorphic because the former is
unramified at 83 but the latter is not.

The output of our gluings can be found in [SW25a].

ℓ = 3 ℓ = 5 ℓ = 7
H⊥/H irreducible and

(for ℓ ≥ 5) passes symplectic test
3009 595 32

Successful gluing 2575 536 19
Gives an error 5 9 1

Did not find gluing 429 50 12

Table 4. Gluing Results.
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