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Abstract. We exhibit an algorithm to compute equations of an algebraic
curve over a computable characteristic 0 field from the power series expansions
of its regular 1-forms at a nonrational point of the curve, extending a 2005
algorithm of Baker, González-Jiménez, González, and Poonen for expansions
at a rational point. If the curve is hyperelliptic, the equations present it as
an explicit double cover of a smooth plane conic, or as a double cover of the
projective line when possible. If the curve is nonhyperelliptic, the equations cut
out the canonical model. The algorithm has been used to compute equations
over Q for many hyperelliptic modular curves without a rational cusp in the
L-functions and Modular Forms Database.

1. Introduction

A curve X is called nice if it is smooth, projective, and geometrically integral.
From now on, X is a nice curve of genus g ≥ 2 over Q, but all our theorems
and algorithms work over any ground field F of characteristic 0 if field operations
in F are computable. Our goal is to give an algorithm that takes as input the
initial terms of the expansions of 1-forms forming a basis of the Q-vector space
Γ(X,Ω1

X/Q) at a nonrational point and returns equations for X over Q; such input
arises naturally in [Zyw24, Section 5], for instance. (The analogue for expansions
at a rational point is covered in [BGGP05, Section 2.1].) These equations will cut
out the canonical model if X is nonhyperelliptic, and a double cover of a genus
0 curve if X is hyperelliptic; see Theorem 3.1 for more details. Examples of the
nonhyperelliptic case (the easier case) were worked out in [Bar14, Section 7] and
[MS20, Sections 7 and 8]. So the main new work is in the hyperelliptic case.

The algorithm in [BGGP05, Section 2.1] will produce a model over the field
of definition of the nonrational point, but there is no easy way to pass from that
to the equation over Q. Also, the presence of the rational point in [BGGP05,
Section 2.1] meant that in the hyperelliptic case, the image of the canonical map
was P1

Q, whereas in the present article, it could instead be a pointless genus 0 curve
instead of P1

Q, in which case X will need to be given as a double cover of a plane
conic. Moreover, there are additional complications in our article coming from the
fact that even the expansion of objects defined over Q have coefficients in a larger
number field.
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The motivation for our algorithm is the problem of finding equations of modular
curves that have no rational cusp. The algorithm has been used so far to calculate
equations of over 4700 such hyperelliptic modular curves without a rational cusp
for the L-Functions and Modular Forms Database [LMFDB], among which over
1500 are a double cover of a pointless genus 0 curve.

2. Hyperelliptic curves

The curve X is called hyperelliptic if the canonical map X → Pg−1 is not a closed
immersion. Equivalently, X is hyperelliptic if there exists a degree 2 morphism π
from X to some genus 0 curve C. Suppose that this is the case. Then C and the
morphism π are unique up to isomorphism. In fact, C is the image of the canonical
map. The curve C need not be isomorphic to P1 over Q, but the anticanonical
map for C identifies C with a smooth plane conic in P2 = ProjQ[a, b, c]. For
any d ∈ Z≥0, let Q[a, b, c]d be the space of degree d homogeneous polynomials in
Q[a, b, c].

3. Main theorem

Now return to the general case, in which X is any nice curve of genus g ≥ 2 over
Q. Let K ⊇ Q be a finite extension. Let XK = X ×Q K. Let P ∈ X(K). Assume
that K = Q(P ). Let q be a uniformizer of the completed local ring ÔXK ,P . Let
ω1, . . . , ωg be a Q-basis of H0(X,Ω1). For each i ∈ {1, . . . , g}, the Taylor expansion
of ωi at P is wi dq for some wi ∈ K[[q]]. For B ∈ Z>0, let K[q]<B ≃ K[[q]]/(qB) be
the vector space of polynomials of degree < B. Let w̄i := (wi mod qB) ∈ K[q]<B .

Theorem 3.1. Let B = 19g + 48. There exists an algorithm with
Input: g, K, and polynomials w̄1, . . . , w̄g ∈ K[q]<B arising from some nice

curve X over Q and P ∈ X(K) as above.
Output:

• If X is nonhyperelliptic, return nonhyperelliptic and a finite list of
homogeneous polynomials over Q cutting out a curve in Pg−1 linearly iso-
morphic over Q to the canonical model of X.

• If X is hyperelliptic and g is even, return hyperelliptic and a separable
polynomial f ∈ Q[x] of degree 2g + 1 or 2g + 2 such that X is birational
to the curve y2 = f(x).

• If X is hyperelliptic and g is odd, return hyperelliptic and homogeneous
polynomials Q ∈ Q[a, b, c]2 and H ∈ Q[a, b, c]g+1 such that

C ≃ Proj
Q[a, b, c]

(Q)
⊂ P2 and X ≃ Proj

Q[a, b, c, y]

(y2 −H,Q)
⊂ P

(
1, 1, 1,

g + 1

2

)
.

In this case, if a rational point on C is given, find a model y2 = f(x) as
in the even genus hyperelliptic case.

Remark 3.2. In the odd genus hyperelliptic case, we may require the quadratic
form Q to be diagonal, if desired.

Remark 3.3. By computing Hilbert symbols, one can determine whether a given
smooth plane conic C over Q is isomorphic to P1

Q; this is essentially due to Legendre.
(More generally, by the Hasse–Minkowski local–global principle for quadratic forms,
this can be done over any number field; see, e.g., [Shi10, Theorem 26.3]. But it
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CURVE EQUATIONS FROM EXPANSIONS OF 1-FORMS AT A NONRATIONAL POINT 3

involves more than just field operations, so it is not an algorithm that generalizes
to any characteristic 0 field.)

4. Theoretical lemmas

Before explaining the algorithm, we prove a few theoretical lemmas. Let S =
Q[x1, . . . , xg] be the homogeneous coordinate ring of Pg−1 over Q. Let I ⊂ S be
the homogeneous ideal of the canonical image of X. Let Id ⊂ Sd be the degree d
parts of I ⊂ S.

Lemma 4.1. Let f ∈ Sd. If f(w1, . . . , wg) ∈ K[[q]] vanishes at q = 0 to order
> d(2g − 2)/[K : Q], then the corresponding section of (Ω1)⊗d is 0.

Proof. The section has more than d(2g − 2) = deg(Ω1)⊗d geometric zeros in
total (at P and its conjugates), so it is 0. □

Corollary 4.2. If B > d(2g − 2)/[K : Q], then from the input as in Theorem 3.1
one can compute a basis for Id.

Proof. By Lemma 4.1, Id is the kernel of the Q-linear map Sd → K[[q]]/(qB)
sending each monomial to its truncated expansion. □

Lemma 4.3. The dimension of I2 is
(
g−1
2

)
if X is hyperelliptic, and

(
g−2
2

)
if not.

Proof. We may work over C. Let C[x]≤n be the space of polynomials of degree
at most n. In the hyperelliptic case, X is the smooth projective model of y2 = F (x)
with degF = 2g+1, and H0(X,Ω1) = C[x]≤g−1

dx
y (see [ACGH85, p. 11], for exam-

ple), so I2 is isomorphic to the kernel of the surjective map ker(Sym2 C[x]≤g−1 →
C[x]≤2g−2), so dim I2 = g(g+1)/2− (2g−1) =

(
g−1
2

)
. In the nonhyperelliptic case,

this follows from Max Noether’s theorem [ACGH85, p. 117]. □

Lemma 4.4. Let X be a hyperelliptic curve over Q. Let L be a finite extension of
Q. Let P ′ ∈ X(L). Suppose that ω′

1, . . . , ω
′
g is an L-basis for H0(XL,Ω

1) such that
ordP ′(ω′

1) < . . . < ordP ′(ω′
g). Let t = ω′

g−1/ω
′
g ∈ L(X). Then t ∈ L(C) and is of

degree 1 (as a rational function on CL).

Proof. We may assume that XL is the smooth projective model of y2 = F (x)
for some F ∈ L[x], and P ′ is at infinity. Then for i = 0, . . . , g − 1, we have
ω′
g−i = Ji(x) dx/y for some Ji(x) ∈ L[x] of degree exactly i. Then t is a degree 1

polynomial in L[x]. □

Lemma 4.5. Let C be a genus 0 curve over Q. Let T be the tangent bundle of C.
Let V := H0(C, T ). Let L be a finite extension of Q, with Q-basis λ1, . . . , λℓ. Let t
be a degree 1 rational function on CL.

(a) The meromorphic sections d
dt , t

d
dt , t

2 d
dt of T form an L-basis of VL.

(b) The elements TrL/Q(λjt
i d
dt ) for 0 ≤ i ≤ 2 and 1 ≤ j ≤ ℓ span V .

Proof.

(a) Without loss of generality, CL = P1 and t is the standard coordinate.
Then T ≃ O(2), so dimVL = 3. Also, d

dt has a double zero at ∞, so
d
dt , t

d
dt , t

2 d
dt are independent global sections.

(b) The map TrL/Q : VL → V is surjective. □
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Lemma 4.6. Let C be a smooth plane conic in P2 over a field k. Let h ∈ k(C)
be a rational function of degree d. Then h is given by a ratio of two homogeneous
forms on P2 of degree ⌈d/2⌉.

Proof. Let L ∈ DivC be a hyperplane section of C ⊂ P2. Write (h) =
(h)0−(h)∞, where (h)0 and (h)∞ are effective and of degree d. Then ⌈d/2⌉L−(h)∞
is of degree ≥ 0, so by Riemann–Roch there exists a section s of OC(⌈d/2⌉) vanishing
at the poles of h. Then hs is another global section of OC(⌈d/2⌉). Both s and hs
are restrictions of homogeneous forms on P2, and h is their ratio. □

Lemma 4.7. Let π : X → Y be a morphism of nice curves over C. Let P ∈ X(C).
Let Q = π(P ). Let e be the ramification index of π at P . Let s be a nonzero
meromorphic section of (Ω1

Y )
⊗n for some n ∈ Z. Then ordP (π

∗s) = e ordQ s +
n(e− 1).

Proof. Let t be a uniformizer at π(P ) on Y . For any f ∈ Q(Y )×, we have
ordP (π

∗f) = e ordQ(f) by definition, and ordP (π
∗dt) = e− 1 as in the proof of the

Hurwitz formula. Since s = f dt⊗n for some f ∈ Q(Y )×, the formula follows. □

5. Proof of main theorem ignoring precision

We now start the proof of Theorem 3.1. Compute a basis for I2 using Corol-
lary 4.2 and apply Lemma 4.3 to test if X is hyperelliptic. If X is nonhyperellip-
tic, compute bases for I2, I3, I4 using Corollary 4.2; these are enough to cut out
X ⊂ Pg−1, by Petri’s theorem [Pet23]. Henceforth, we assume that X is hyperel-
liptic.

Steps (1)–(2) below require working over a field L such that X has an L-point
P ′, so that there is an isomorphism CL ≃ P1

L such that P ′ maps to ∞. We choose
L to be an isomorphic copy of K, and let P ′ ∈ X(L) be the result of applying
the isomorphism to P ∈ X(K). (We will need to consider (L ⊗ K)/K-traces, so
keeping separate names for L and K will help clarify things.) We will need to take
L/Q-traces of elements of H0(CL, TL) as in Lemma 4.5 to get elements of H0(C, T );
these will be computed as (L ⊗K)/K-traces of their expansions at P (the tensor
product is over Q).

We first explain the algorithm as if we had w1, . . . , wg ∈ K[[q]] to infinite
precision, and later in Section 6 explain what modifications are needed when we
have only their truncations w̄1, . . . , w̄g.

(1) (Find the expansion of a rational function t : XL → CL ≃ P1
L.) Let

W ⊂ K[[q]] be the Q-span of w1, . . . , wg, and let WK ⊂ K[[q]] be their K-
span. Run Gaussian elimination over K to find a new K-basis w′

1, . . . , w
′
g

of WK such that ordP (w
′
1) < · · · < ordP (w

′
g). Let M ∈ GLg(K) be the

change-of-basis matrix sending w1, . . . , wg to w′
1, . . . , w

′
g. Applying the

isomorphism K → L yields a matrix ML ∈ GLg(L). Then ML sends
ω1, . . . , ωg to an L-basis ω′

1, . . . , ω
′
g of H0(XL,Ω

1) as in Lemma 4.4. Com-
puting the same L-linear combinations of w1, . . . , wg ∈ K[[q]] produces
elements w′′

1 , . . . , w
′′
g ∈ L⊗W ⊂ (L⊗K)[[q]] representing the expansions

at P of the ω′
i, which have increasing order of vanishing at P ′.

Let t = ω′
g−1/ω

′
g ∈ L(X), as in Lemma 4.4, so t is the “x-coordinate”

on a hyperelliptic model. Its expansion at P is in (L⊗K)((q)).
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(2) (Find expansions of a Q-basis of H0(C, T ).) Let λ1, . . . , λℓ be a Q-basis
of L. The L/Q-traces in Lemma 4.5(b) span V := H0(C, T ), so three
of them form a Q-basis of C. To calculate with them, we start with
the expansions of λjt

i d
dt in (L ⊗ K)((q)) for i = 0, 1, 2 and j = 1, . . . , ℓ,

calculate (L⊗K)/K-traces (traces are compatible with base change), and
find three of them that are K-linearly independent and hence Q-linearly
dependent; call them ∂0, ∂1, ∂2 ∈ K((q)) d

dq ; these are the expansions of a
basis of global sections of T pulled back to X.

(3) (Find the equation Q = 0 of the conic C.) There is a unique Q ∈ Q[a, b, c]2

up to scalar such that Q(∂0, ∂1, ∂2) = 0 in K((q))
(

d
dq

)2

. Then Q = 0 is
the anticanonical model of C in P2. We find Q by linear algebra.

(4) (Find the expansion of h ∈ Q(C) such that Q(X) = Q(C)(
√
h).) In

this step, we compute h ∈ Q(C) such that Q(X) = Q(C)(
√
h). Let

f := a/b, viewed as a rational function on C; its expansion is ∂0/∂1. Let
y = df/ω1 ∈ Q(x) and h = y2. The hyperelliptic involution fixes df and
acts as −1 on H0(X,Ω1), so it negates y and fixes h; that is, h ∈ Q(C).
Then Q(X) = Q(C)(y) = Q(C)(

√
h).

(5) (Write h as a ratio of homogeneous forms.) We now show how to write
h explicitly as F/G for some F,G ∈ Q[a, b, c]g+3. Since f is a rational
function of degree 2 on C, it has at most 2 poles with multiplicity, so df
on C has at most 4 poles with multiplicity (the worst case being when
f has two simple poles), so its pullback to X has at most 8 poles. On
the other hand, ω1 has at most 2g − 2 zeros on X, so y has at most
2g + 6 poles on X. Then h has at most 2(2g + 6) poles on X, so its
degree on C is at most 2g + 6. By Lemma 4.6, there exist homogeneous
forms F,G ∈ Q[a, b, c]g+3 such that F/G = h. To find the coefficients of
possible F and G, we solve the linear system F = hG in these unknown
coefficients, using expansions of ∂0, ∂1, ∂2 and h.

(6) (For even g, find an equation y2 = f(x) for X.) Suppose that g is even.
In this case, C ≃ P1, and we will describe a method to find a rational
parametrization of C, following the strategy of Lemma 4.6. The 1-form
ω1 corresponds to a linear form on Pg−1, which cuts out a divisor D of
odd degree g− 1 on C. Let S be the space of S ∈ Q[a, b, c]g/2 that vanish
along D. By the Riemann–Roch theorem, dimS = 2; we next seek an
explicit basis of S, which will define an isomorphism C → P1. For each
S ∈ S and for j = 2, . . . , g, the element Rj := Sωj/ω1 ∈ Q(a, b, c) lies
in Q[a, b, c]g/2 since S vanishes along D. Thus S is the projection on the
last coordinate of the space R of g-tuples (R2, . . . , Rg, S) of polynomials
in Q[a, b, c]g/2 such that

ω1Rj = Sωj

for all j = 2, . . . , g. Using the expansions of a, b, c, ω1, . . . , ωg at P , we
compute R by linear algebra. Thus we obtain an isomorphism C ≃ P1.

Under C ≃ P1, the function h corresponds to some f ∈ Q(x)×. Now
X is birational to the curve y2 = f(x). Multiply f by a square to make it
a polynomial. Remove square factors (by computing gcd(f, f ′), etc.) to
make f separable. By Riemann–Hurwitz, deg f is 2g + 1 or 2g + 2.
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(7) (For odd g, find H.) Now assume that g is odd. Let F,G be as in
Step 5. We seek H ∈ Q[a, b, c]g+1 separable and J ∈ Q[a, b, c](g+5)/2 such
that FG ≡ HJ2 (mod Q); then the rational function h = F/G equals
HJ2/G2 on C : Q = 0, so the function field of the smooth projective curve
X ′ := Proj Q[a,b,c,y]

(y2−H,Q) equals Q(C)(
√

HJ2/G2) = Q(C)(
√
h), so X ′ ≃ X;

that is, H is as in the statement of the theorem. We cannot simply factor
FG to find H and J , since Q[a, b, c]/(Q) is not a UFD. Instead we will
decompose the zero locus D := ZC(FG) ∈ DivC as U + 2V with U, V
effective divisors on C and U reduced. First, choose p ∈ P2(Q) not on any
line connecting geometric points in D and not on any line tangent to a
geometric point in D; then the projection from p restricts to a morphism
ν : C → P1 that is injective on the geometric points in D and unramified
at those points. Write ν∗D = U ′+2V ′ with U ′, V ′ effective divisors on P1

and U ′ reduced, using factorization in the homogeneous coordinate ring
of P1. Let U = ν∗U ′ ∩D and V = ν∗V ′ ∩D; then D = U + 2V by choice
of ν. We have degU = degU ′ = 2g + 2, so deg V = deg V ′ = g + 5. By
Riemann–Roch on C, an effective divisor of even degree 2d is the zero
locus of a form in Q[a, b, c]d, unique up to scalar and modulo multiples of
Q; in particular, there exist H ∈ Q[a, b, c]g+1 and J ∈ Q[a, b, c](g+5)/2 with
ZC(H) = U and ZC(J) = V ; we find explicit H and J by linear algebra.
Then FG ≡ αHJ2 (mod Q) for some α ∈ Q×. Evaluate F,G,H, J at
some zero of Q in Q3

to find α, and replace H by αH to get FG ≡ HJ2

(mod Q).
If a rational point on C is given, projection from it defines an isomor-

phism C → P1. Find an equation y2 = f(x) for X as in the last paragraph
of (6).

6. Precision analysis

Object Space ordP Absolute error Relative error
ωj H0(X,Ω1) [0, 2g − 2] +O(qB) dq ·(1 +O(qB−2g+2))
ω′
j H0(XL,Ω

1) [0, 2g − 2] +O(qB) dq ·(1 +O(qB−2g+2))
t L(C) [−2, 2] +O(qB−2g) ·(1 +O(qB−2g+2))
dt (Ω1

CL
)ηCL

[−3, 1] +O(qB−2g−1) dq ·(1 +O(qB−2g−2))

ti d
dt H0(CL, T ) [−1, 3] +O(qB−2g−3) d

dq ·(1 +O(qB−2g−2))

∂i H0(C, T ) [−1, 3] +O(qB−2g−3) d
dq ·(1 +O(qB−2g−6))

M(∂0, ∂1, ∂2) H0(C, T d) [−d, 3d] +O(qB−2g−d−2)
(

d
dq

)d

·(1 +O(qB−2g−4d−2))

f Q(C) [−4, 4] +O(qB−2g−10) ·(1 +O(qB−2g−6))
df (Ω1

C)ηC
[−5, 5] +O(qB−2g−11) dq ·(1 +O(qB−2g−16))

y Q(X) [−2g − 3, 5] +O(qB−4g−19) ·(1 +O(qB−2g−16))
h Q(C) [−4g − 6, 10] +O(qB−6g−22) ·(1 +O(qB−2g−16))

hG T g+3
ηC

[−5g − 9, 3g + 19] +O(qB−11g−23)
(

d
dq

)g+3

·(1 +O(qB−6g−14))

F − hG T g+3
ηC

+O(qB−11g−23)
(

d
dq

)g+3

ω1Rj , Sωj H0(X,Ω1
X ⊗ π∗T

g
2 ) [−g/2, 7g/2− 2] +O(qB−9g/2−2)

(
d
dq

) g
2−1

·(1 +O(qB−4g−2))

Table 1. Tracking q-adic precision of objects in the proof of the
main theorem.
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In Section 5, we assumed that w1, . . . , wg ∈ K[[q]] were given to infinite preci-
sion. Now, in Table 1, we track how much precision we have in the steps if we start
only with w1, . . . , wg up to addition of O(qB). For each Laurent series, we bound
both absolute error (addition of O(qn) for some n) and relative error (multiplication
by 1 + O(qn) for some n); we can pass between them if the valuation of a power
series is controlled; these valuations lie in the range given in the ordP column of
Table 1. For series with coefficients in the étale algebra L ⊗K, the bounds apply
when projected onto any field factor of L⊗K. Let ηC be the generic point of C, so
the stalk (Ω1

C)ηC
is the space of meromorphic 1-forms on C. Define ηCL

similarly.

Lemma 6.1. Table 1 is correct.

Proof. Each ωj is regular and has 2g−2 zeros in total, so ordP (ωj) ∈ [0, 2g−2].
It is given to absolute error O(qB) dq. The ω′

j are L-linear combinations of the ωj ,
so they have the same absolute error. Since each ωj and ω′

j vanishes at P to order
at most 2g − 2, their relative error is 1 + O(qB−2g+2) (as usual, big-O notation
allows for the possibility that the error could be smaller than specified).

Now t = ω′
g−1/ω

′
g, so its relative error is again 1 + O(qB−2g+2). On the other

hand, t is the “x-coordinate” of a hyperelliptic model of X, so ordP (t) ∈ [−2, 2].
Since ordP t ≥ −2, the absolute error of t is O(qB−2g).

The absolute error of dt is then O(qB−2g−1) dq. Again since t is the “x-
coordinate” of a hyperelliptic model of X, we have ordP (dt) ∈ [−3, 1]. Since
ordP (dt) ≤ 1, the relative error of dt is 1 +O(qB−2g−2).

Fix i ∈ {0, 1, 2}. The relative error of ti d
dt is the worse of the relative errors of

t and dt, which is 1 + O(qB−2g−2). The section ti d
dt is regular on C, with 2 zeros,

so ordπ(P )(t
i d
dt ) ∈ [0, 2], so ordP (t

i d
dt ) is in [0, 2] or −1 + 2[0, 2] = [−1, 3] according

to whether π is unramified or ramified at P , by Lemma 4.7 applied with n = −1.
Since ordP (t

i d
dt ) ≥ −1, the absolute error of ti d

dt is O(qB−2g−3) d
dq .

The ∂i are linear combinations of the ti d
dt , so they have the same absolute error

O(qB−2g−3) d
dq . As for ti d

dt , we have ordP (∂i) ∈ [−1, 3]. Since ordP (∂i) ≤ 3, the
relative error of ∂i is 1 +O(qB−2g−6).

We will need to analyze the error in M(∂0, ∂1, ∂2) for various nonzero forms
M ∈ H0(P2,O(d)) = Q[a, b, c]d, for various d ≥ 1, so we do a calculation for all
of these at once, and later specialize to the particular M we need. Its order of
vanishing at π(P ) is in [0, 2d], since C is a curve of degree 2 in P2. Then its order
of vanishing at P is in [0, 2d] or −d + 2[0, 2d] = [−d, 3d], according to whether π
is unramified or ramified at P , by Lemma 4.7 applied with n = −d. If M is a
monomial, then the absolute error of M(∂0, ∂1, ∂2) is at worst that of one ∂i minus
d − 1 (because all the ∂j in the monomial have at worst a simple pole), hence at

worst O(qB−2g−d−2)
(

d
dq

)d

. Since ordP (M(∂0, ∂1, ∂2)) ≤ 3d, the relative error is at

worst 1 +O(qB−2g−4d−2).
The rational function f := a/b is of degree 2 on C, and the ramification index

of π at P is at most 2, so ordP (f) ∈ [−4, 4]. Its relative error is the same as that
of a = ∂0 and b = ∂1, which is 1 + O(qB−2g−6). Since ordP (f) ≥ −4, its absolute
error is O(qB−2g−10).

Then ordP (df) ≥ ordP (f) − 1 ≥ −5. Since f on C has at most 2 poles with
multiplicity, df on C has at most 4 poles with multiplicity, but the divisor of df on
C has degree −2, so df has at most 2 zeros on C, so ordP (df) ≤ 2 · 2 + 1 = 5, the
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worst case being if π is ramified at P . The absolute error of df is O(qB−2g−11), so
the relative error is 1 +O(qB−2g−16).

Since ordP (df) ∈ [−5, 5] and ordP (ω1) ∈ [0, 2g − 2], we have ordP (y) =
ordP (df/ω1) ∈ [−2g − 3, 5]. The relative error of y is the worse of the relative
errors of df and ω1, which is 1 + O(qB−2g−16). Then the absolute error of y is
O(qB−4g−19).

Squaring gives ordP (h) ∈ 2[−2g− 3, 5] = [−4g− 6, 10], and h has relative error
1 +O(qB−2g−16) and absolute error 1 +O(qB−6g−22).

For hG, we compute ordP and the relative error from the corresponding num-
bers for h and M := G of degree d = g+3. Since ordP (hG) ≥ −5g−9, the absolute

error is then O(q(B−6g−14)+(−5g−9))
(

d
dq

)g+3

= O(qB−11g−23)
(

d
dq

)g+3

. The abso-

lute error for F , from the M(∂0, ∂1, ∂2) row with d = g+3, is O(qB−2g−(g+3)−2)
(

d
dq

)g+3

.

Combining these gives F −hG with absolute error O(qB−11g−23)
(

d
dq

)g+3

. (We do
not need the ordP and relative error of F − hG.)

The calculations for ω1Rj and Sωj are analogous to those for hG. □

Lemma 6.2. If B ≥ 19g + 48, then we can perform Steps 1–6 in the proof of
Theorem 3.1. (Step 7 does not involve expansions; it is carried out exactly.)

Proof. In Step 3, Q is determined by Q(∂0, ∂1, ∂2) mod q7 because when
M ∈ H0(P2,O(2)), we have ordP M(∂0, ∂1, ∂2) ≤ 6. We computed Q(∂0, ∂1, ∂2)

to absolute error O(qB−2g−d−2)
(

d
dq

)d

with d = 2, which is good enough since
B − 2g − 2− 2 ≥ 7.

Let (h)∞ be the polar part of the divisor of h, which has degree at most 2g+6
as explained in Step 5. For any F,G ∈ Q[a, b, c]g+3, the expression F − hG is
a global section of T g+3 ⊗ OC((h)∞), which is a line bundle of degree at most
2(g + 3) + (2g + 6) = 4g + 12. The pullback of this bundle to X has degree at
most 2(4g + 12) = 8g + 24. Thus, if ordP (F − hG) > 8g + 24, then F − hG = 0.
In other words, it suffices to do the linear algebra in Step 5 to absolute precision

+O(q8g+25)
(

d
dq

)g+3

. By Table 1, we have this precision if B− 11g− 23 ≥ 8g+25,
or, equivalently, B ≥ 19g + 48.

The degree of Ω1
X⊗π∗T g/2 on X is 2g−2+2·2(g/2) = 4g−2, so if ordP (ω1Rj−

Sωj) > 4g − 2, then ω1Rj − Sωj = 0. In other words, it suffices to do the linear

algebra in Step 6 to absolute precision +O(q4g−1)
(

d
dq

)g/2−1

. By Table 1, we have
this precision if B − 9g/2− 2 ≥ 4g − 1, or, equivalently, B ≥ 17g/2 + 1. □

Remark 6.3. In each of the models found, we have the expansions at P of the new
coordinate functions, as Laurent series in q, so we can find the coordinates of P in
the new model. Similarly, by linear algebra we can express ω1, . . . , ωg in terms of
the new coordinates, if desired.

Remark 6.4. The genus of a modular curve with geometric gonality 2 is at most
17 [BGGP05, Remark 4.5]. So, in running the algorithm of Theorem 3.1 on hyper-
elliptic modular curves, we always have g ≤ 17.
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