Explicit supersingular cyclic curves
Marco Streng

ABSTRACT. Li, Mantovan, Pries, and Tang proved the existence of supersin-
gular curves over I, in each of the special families of curves in Moonen’s clas-
sification. Their proof does not provide defining equations of these curves. We
make some of their results explicit using the reductions modulo p of previously
computed curves with complex multiplication.

1. Introduction

Moonen [Il Table 1] showed that there are exactly 20 families of cyclic covers of
P! that give rise to a special subvariety of the moduli space of principally polarised
abelian varieties. Denoting these families by M[1]-M[21], more recent work of Li,
Mantovan, Pries, and Tang considers five of these families and shows that they
contain supersingular curves as follows (and as left open in [3, Theorem 1.1]).

THEOREM 1.1 ([2| Theorem 7.1]). In each of the following families there exists
a supersingular smooth curve of genus g defined over F, for all sufficiently large
primes p that satisfy the given condition:
in M[6] with g = 3, assuming p =2 (mod 3);
in M[8] with g = 3, assuming p =3 (mod 4);
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in M[10] with g = 4, assuming p =2 (mod 3);
in M[14] with g = 4, assuming p =5 (mod 6); and
in M[16] with g = 6, assuming p =2, 3 or 4 (mod 5).

By taking reductions modulo primes of known complex multiplication curves,
we prove the following more explicit version of cases 1, 2, and 5.

THEOREM 1.2. In each of the following families there exists a supersingular
smooth curve of genus g defined over F), for all primes p that satisfy the given
condition:

1. in M[6] with g =3, assuming p =2 (mod 3);

2. in M[8] with g = 3, assuming p =3 (mod 4); and

5. in M[16] with g = 6, assuming p =2, 3 or 4 (mod 5) and Conjecture [{.1]
The curves are given explicitly in Theorems [2.]], and [{-3 respectively.

The improvement that Theorem [I.2] provides over Theorem [T.1]is as follows:
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(a) we remove the condition that p be sufficiently large,
(b) we give explicit equations of the curves,
(c) we give curves that are defined not only over F,, but over F,,.

2. Supersingular Picard curves in M[6]

The family M[6] consists of the smooth algebraic curves that have a model of
the form y3 = f(x) for a separable polynomial f of degree 4. This is a special
family of smooth plane quartic curves known as Picard curves. It features in the
LMFDB [4] as 3.3-1.0.3-3-3-3-3.1 and [3.3-1.0.3-3-3-3-3.2.

Koike-Weng [5] and Lario-Somoza-Vincent [6] computed many examples of
complex multiplication (CM) curves in this family. However, in order to prove
Theorem [[LIl1 we can make do with one curve

C:yP =zt -z

Note that it has an automorphism [(o] : (z,y) = (3, (oy) over K = Q((o).
This induces an automorphism of the Jacobian J = Jac(C) over K and in fact an
embedding Z[¢g] — End(Jk ), proving that this curve indeed has CM.

For curves of genus 3 with CM by a cyclic sextic field, Proposition 4.1 of
Kiliger-Labrande-Lercier-Ritzenthaler-Sijsling-Streng [7] tells us exactly when the
reduction modulo p is supersingular. We get the following result.

THEOREM 2.1. For all prime numbers p =2 (mod 3) the plane projective curve
over F,, given by
3_ .4
y=a" -z
is smooth and supersingular in the family M[6].

ProOOF. The given model of C has good reduction modulo every prime p # 3.
Then Proposition 4.1 of [7] shows that the reduction of J modulo p is supersingular
if and only if pOg has exactly 1 or 3 prime factors. This is the case exactly when
p# 1 (mod 3). O

For a self-contained proof we can use the following lemma instead of [7, Propo-
sition 4.1]. Note that (p mod 9) has even order in (Z/9Z)* exactly if p = 2 (mod 3).

LEMMA 2.2. Let K be a CM field that is cyclic of some degree 2g over Q. Let
A be an abelian variety of dimension g over a number field k with endomorphism
ring isomorphic to Ok .

Let p be a prime number that is unramified in K and such that Frob, €
Gal(K/Q) has even order. Let B | (p) be a prime of k of good reduction for A.

Then the reduction (A mod B) is supersingular.

PRrOOF. Without loss of generality (that is, by extending k) all endomorphisms
of A are defined over k. Then the Shimura-Taniyama formula [8, Theorem 1(72) in
Section 13] tells us that the Frobenius endomorphism of (A mod B) is an element
m e Ok.

We claim now that for every Galois conjugate ©’ of m we have ordy(n') =
%ordsp(p). Assuming the claim, we get for every ¢ that the coeflicient asg—; of
X?97% in the characteristic polynomial of 7 satisfies ordsy(azg—;) > i - zordy(p).
The Newton polygon therefore is a straight line segment from (0,0) to (2g,g) of
slope %, hence A is supersingular.
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Now it remains only to prove the claim, which we do as follows. By assumption,
the decomposition group of p in K/Q contains an element of order 2 in Gal(K/Q),
and since Gal(K/Q) is cylic, the only such element is complex conjugation. In
particular, we get for every a € K:

ord, (@) = ordg(ar) = ordp ().
We also have 7'/ = p for every conjugate 7’ of 7, hence
ord,(p) = ordy () + ord, (') = 2ord, (7'),

which proves the claim and finishes the proof of the lemma. (I

3. Supersingular hyperelliptic curves in M|8]

The family M[8] consists of the quadruple covers of the projective (U, V')-line

of the form
C:Y*=F(UYV) F3(U, V)2,
where the F; are coprime homogeneous separable polynomials of degree 3.

Suppose that Fy splits. A change of variables then gives Fo = UV, or in affine

coordinates
C:y' =uf(u)?
for a separable polynomial f of degree 3 with f(0) # 0.

Using a further change of variables puts this curve in hyperelliptic Weierstrass
form. Indeed, let = be the element x = y?/f(u) in the function field k(C) of C.
Then k(C) is generated by z and y because we have u = 22. Moreover, these new
coordinates satisfy

y2 = :Cf(’LL) = {Ef(.’b2),

hence we write our curve also as
C:y? =af(2?).
Weng [9] gave a construction for CM curves of this latter Weierstrass form. For
example, she constructed the curve
y? =u" +6u° + 9 + u,
which has complex multiplication by Q({y)" (i), as was later proven by Costa-
Mascot-Sijsling-Voight [10}, 11I]. We get the following result.

THEOREM 3.1. For all prime numbers p = 3 mod 4 except p = 3, the curve
v =af(x?)  or equivalently y* = uf(u)?,
with
flu) = u® 4 6u? +9u + 1
is a smooth supersingular curve of genus 3 defined over F), in the family M8]. For
the prime p = 3, the curve with f(u) = u® + Tu? + 14u + 7 has the same property.

PROOF. For p = 3 this is one curve, so a direct verification by counting points
proves the result. We do this using SageMath [12], see the accompanying code [13].
For p # 3 the proof is exactly the same as for Theorem (using either [7],
Proposition 4.1] or Lemma , but with the field Q(o)™ (7). O

REMARK 3.2. The polynomial u® + 7u? + 14u + 7 again comes from Weng [14].
Since we only use it over F3, we could have equivalently written u® + u? — u + 1.
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4. Supersingular cyclic plane quintics in M[16]

The family M[16] consists of the smooth plane curves y° = f(z) for a separable
polynomial f of degree 4 or 5. These curves were dubbed cyclic plane quintics or
CPQ curves by Somoza who constructed in [I5l Section 2.3] the curve

(4.1) C:y’=a*—242® +32° + 2z
and conjectured the following.

CONJECTURE 4.1. The Jacobian J of the curve C of has End(Jg) = Ok,
where K = Q(¢9)*((s)-

REMARK 4.2. T have no doubt about the validity of the conjecture, though
rigourous verification seems to be computationally just out of reach using the meth-
ods of [10], see [16].

We have the following evidence for the conjecture. First of all, it is stated in
[15] Table 4.2] that there exists a curve of the form y? = f(x) with f(x) € Q[z]
such that its Jacobian has CM over Q by K. The method for computing this curve
is high-precision numerical approximation, hence C is numerically extremely close
to a curve that does have the correct CM.

Next, the curve C that Somoza obtained in this way has discriminant 3'°. Such
a smooth number seems unlikely to appear by chance.

Finally, we verified that C is supersingular modulo 2, 7, 13, and 17, consistently
with Theorem below (see [13]). This again seems unlikely to be by chance.

THEOREM 4.3. Assume Conjecture /.1 For all prime numbers p =2, 3, or 4
mod 5) except p = 3 the curve over I, given by (4.1) is supersingular.
p g ) g
Over Fs3, the curve given by y° = x* — Tx? 4 Tz is supersingular.

PrOOF. Again we check the curve for p = 3 separately. For the other primes,
the equation has good reduction. Assume Conjectureand apply Lemma
The primes p # 3 that are 2, 3, or 4 (mod 5) are unramified in K/Q and have
order 2 or 4 in (Z/5Z)*. In particular, the corresponding Frobenius automorphism
of Q(¢5) has even order, and so does that of K. Therefore, Lemma gives the
result. O

REMARK 4.4. In this case, Proposition 4.1 of [7] does not apply directly, as it
is stated only for abelian threefolds. The method of proof applies to more general
abelian varieties. We condensed it to what we needed and then generalised this,
which resulted in Lemma

5. Final notes

5.1. Other families. We restricted to the three families M[6], M][8], and
M{16] because the literature contains algorithms for reconstructing curves in these
families from their period matrices (and in fact even contains the required example
curves). Completely new reconstruction algorithms are far beyond the scope of this
paper and are in fact a project in development by the author.

5.2. Databases of curves, and verification. The curves that we needed
came from three different sources in the literature. More importantly, the proof that
they were correct came from yet two other sources or (in the case of M[16]) does
not even exist yet. A database with CM curves and certificates of their Jacobians’
endomorphisms would be very useful.
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