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Abstract. We present three examples in an emerging theory of fine struc-

ture in landscapes of L-functions. These examples illustrate how the classical
principles of zero repulsion and zero rigidity underlie the novel phenomena of

ditch avoidance and congruence bias.

In our LuCaNT 2023 paper [3] we organized collections of L-functions by repre-
senting each L-function as an “L-point” in a Euclidean region, thereby obtaining
what we call landscapes. The last paragraph in [3, §3.1] asked for an explanation of
a striation phenomenon very visible in the landscape presented as [3, Figure 3.1].
The report [8] continued the study of this particular landscape, emphasizing certain
fine structure that underlies the striation phenomenon. It also sketched how we
expect such fine structure to be present in general landscapes. This theory is still
mainly in an experimental stage, and it is important to have data from as many
landscapes as possible so as to, for example, understand how the strength of fine
structure varies in different regimes.

Sections 1, 2, and 3 draw increasingly complex landscapes and explain with
reference to these examples what we mean by fine structure. Section 4 uses zeros
of the L-functions in question to heuristically explain striations in terms of ditch
avoidance. Section 5 explains how the nature of the ditches causes a congruence
bias that we did not even suspect when we wrote [3]. Section 6 was added in the
revision stage of this paper; it uses the newly found [6] as an essential starting
point, and takes next steps towards making the theory rigorous. Because of the
examples-first structure of this paper, some readers may want to take an early look
at the later more general sections. For example, understanding trapped zeros as
illustrated by Figure 4 facilitates the reading of the first three sections.

We follow the general conventions of [3]. Our analysis uses only the functional
equation, which we write in the form

ΛL(s) := GL(s)L(s) = εLΛL(1− s)

where f(z) := f(z). We refer to GL(s) as “the Γ-factors,” but it also contains a
factor Ns/2 where N is the conductor of the L-function. We refer to εL as “the
sign,” and it is a complex number on the unit circle. Central to our theory is
that the Γ-factors and the sign of a given L-function give a “best first guess” at
where the critical zeros of the L-function are. These best first guesses involve the
Riemann-Siegel theta function and close analogs, and are slightly too complicated
to describe here.

The degree 2 data we use come from numerical computations of [9], with initial
segments of the data being made completely rigorous in the LMFDB [7]. Our
degree 3 data were generated using “L-functions out of nothing” [2, 5] and are thus
heuristic; data are available at [4].
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1. Fixed sign, one spectral parameter

The two simplest nontrivial landscapes come from Maass forms on SL(2,Z).
The corresponding degree 2 L-functions have GL(s) = ΓR(s+ δ+ iλ)ΓR(s+ δ− iλ),
where (δ, εL) = (0, 1) for even Maass forms, and (1,−1) for odd Maass forms. The
landscapes are drawn in Figure 1, with ditches represented by vertical segments.
They occur where the best first guess places a zero at 1

2 + λi, in which case it

also places a zero at 1
2 − λi. The ditches occur at the local minima of w±(t) =

cos
(
2t log

(
t
eπ

)
∓ π

4

)
, where + and − on the left indicate the even and odd cases.
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Figure 1. L-points of even (top) and odd (bottom) Maass forms on SL(2,Z).

A key role in our theory in this instance is the number z1 of trapped zeros of
a given L-function. A zero is trapped when its imaginary part is in (−λ, λ). An
interval between adjacent ditches is labeled by the expected number of trapped
zeros for any L-points in it. A key point is that this number, as well as its analogs
in later sections, is computable, like the ditches are, from GL(s) and εL only.

One can see that there is a tendency of L-points to avoid ditches, and that this
tendency is stronger in the even case. Not evident from the picture is that, for all
the drawn L-points, the number of trapped zeros agrees with the expected number
of trapped zeros. The ditch avoidance, and the matching of actual and expected
numbers of trapped zeros, are aspects of fine structure.

A more analytic way to capture ditch avoidance is to consider the sum fε(T ) =∑ε
λ<T wε(λ), with the superscript on the sum indicating that only λ of parity ε are

included. If there were no ditch avoidance phenomenon, since wε is 0 on average one
would expect fε(T ) to remain very small as the cutoff T increases, and moreover
exhibit chaotic oscillations. However, the observed behavior is very different as
follows. In the interval [0, 1400] the data from [9] says that there are 77926 and
80044 different λ coming from even and odd Maass forms respectively. One has
f+(1400) = 6250.1 and f−(1400) ≈ 236.1. The numerical fits f+(T ) ≈ 0.111T 1.509

and f−(T ) ≈ 3.433T 0.582 are quite accurate over the entire interval [0, 1400]. Thus
ditch avoidance persists well past the window of Figure 1, being strong in the even
case and much weaker in the odd case. This purely experimental finding on f+(T )
will be improved in Section 6, while the experimental finding on f−(T ) is too subtle
for current theory.

2. Varying sign, one spectral parameter

Our next example concerns L-functions of degree 3 and conductor 4. If the local
representation at 2 is Steinberg, then the sign is a cube root of 1, and otherwise the
sign is not restricted. In Figure 2 we combine both cases, with the argument of the
sign on the vertical axis, and the spectral parameter λ on the horizontal axis. We
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could draw the ditches sharply, like we did in Figure 1 of [8]. However we present
them instead as they were first encountered in our numerical explorations.

Figure 2. L-points with Γ-factor GL = 4s/2ΓR(s+ iλ)ΓC(s+
3
2 − iλ/2).

An upward ditch occurs when the best first guess places a zero at 1
2 −λi while a

downward ditch occurs when it places a zero at 1
2 +

λ
2 i. The L-points have a strong

tendency to avoid the former and a weaker tendency to avoid the latter. Here a
zero is trapped if its imaginary part is in (−λ, λ

2 ). As before, the numbers indicate
the expected number of trapped zeros. Here, the actual number z1 of trapped zeros
is within one of the expected number. To make the actual number readable on the
picture, we color points blue, red, or green according to whether z1 is 0, 1, or 2
modulo 3. So L-points are mostly in their correct regions, the first deviation being
that the green L-point in the blue region 3 actually has only 2 trapped zeros.

3. Two spectral parameters

Our final example revisits Figure 3.2 of [3], but now with superimposed ditches
and L-point coloring. Striations were clearly visible before, but are now explained
by ditches which go between them.

Figure 3. L-points with GL(s)=ΓR(s+iλ1)ΓR(s+1+iλ2)ΓR(s+1 +iλ3)
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As illustrated in Figure 4 below, each L-function has an associated vector (z1, z2),
where zj is the number of critical zeros with imaginary part in (λj , λj+1). Each
region also has such an integral vector, the expected vector of trapped zeros for
L-points in that region. From the general recipe from [8], it is good to focus on the
difference c = z2 − z1 in Z/3. L-points are colored blue, red, or green, according
to their class c. About 80% of the L-points are in their correct region, so that one
can infer the color of regions from the figure. In the upper regime, area is divided
evenly between red = 1 and green = 2, with no area allocated to blue = 0. In the
lower regime, each c occurs, with red = 1 occurring in hexagons, and the remaining
classes occurring only in small triangles, which are six times smaller.

4. Zero repulsion and zero rigidity force ditch avoidance

Here we explain the section title via our third example, the other two examples
being similar but easier. The three plots in Figure 4 show the trivial and critical
zeros of the circled L-points in Figure 3, in order of increasing horizontal coordinate.
Note that there is an evident zero repulsion between the trivial zeros and critical
zeros, and the effect is greater when the trivial zeros are closer to the critical line.

The best guess at zeros is indicated by horizontal segments. They come from
the first term of the Riemann-Siegel formula, which depends only on GL(s) and εL.
The fact that the actual zeros do not stray too far from their predicted locations
is zero rigidity. One can see rigidity in the case of the ζ-function by executing
Plot[{RiemannSiegelZ[t], 2 Cos[RiemannSiegelTheta[t]]}, {t, 0, 100}]
in Mathematica or on wolframalpha.com .

Recall that the ditches occur where a predicted zero agrees with a row of trivial
zeros. Zero repulsion says that there should not be an actual zero nearby. Zero
rigidity says that there should be an actual zero nearby. We resolve this contra-
diction by a ditch avoidance principle that says that L-points are less likely to
occur near ditches.
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Figure 4. The zeros of the three circled L-functions in Figure 3

Zero repulsion and zero rigidity together make the actual number of zeros likely
to be close to the predicted number of zeros. Deviations from prediction can be
expected to be greater as conductors or spectral parameters increase. In Figure 4,
the prediction is correct for the outer two L-functions. However, the blue L-point
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indexing the inner L-function is in a triangle in Figure 3 corresponding to the
color green. For L-points in this triangle, the prediction is (7, 18). This particular
L-function with its actual (z1, z2) = (6, 18) is off by one.

5. Region sizes cause congruence bias

The outline in [8] says that for degree d L-functions, both regions and L-points
have a class in Z/dZ. For fixed ε, the probability measure on Z/dZ induced by the
region sizes can be calculated and it differs markedly from the uniform distribution.
This deviance was already discussed in the last paragraph of Section 3, where classes
0, 1, 2 have an area split of (0, 1/2, 1/2) and (1/8, 3/4, 1/8) in the upper and lower
regions respectively. To the extent that L-points tend to be in their correct region,
their class coming from the configuration of trapped zeros would be biased too.

In our three examples, congruence bias looks as follows. For Figure 1, on each
line only one parity occurs for z1. One can say that the extreme congruence bias is
enforced by the parity of the L-function. In Figure 2, each dashed line is 50% in its
dominant color and 25% in the other colors. But the L-points are almost entirely in
the dominant color. In Figure 3, the L-point bias is moderately close to the region
bias, in both the upper and lower regimes.

6. Towards a rigorous theory of fine structure

While revising this paper, we found a paper by C. J. Mozzochi [6]. Mozzochi
works with wq(t) = cos(2t log

(
qt
eπ

)
− π

4 ), where q > 0 is a parameter. Summing over
λ of both parities, he remarks that, translating to our style of cutoffs, the “trivial
bound” for

∑
λ<T wq(λ) from the Selberg trace formula is O(T 3/2). His Theorem 1

then says that for q the reciprocal of an integer, the exponent 3/2 cannot be lowered.
Thus, taking q = 1, [6] is proving the indefinite continuation of ditch avoidance in
the classical context of SL2(Z), already in 1999! It is moreover proving that the λ
also avoid other collections of ditches, one for each reciprocal integer.

We are in the process of generalizing and sharpening Mozzochi’s theorem to∑
λ<T

ε
wq(λ) =

aεqT
3/2

3π3/2
+ o(T 3/2),

with the expectation that we can obtain power-saving error term. Thus we are
refining by fixing the parity ε and giving a specific growth constant. The factor aεq
is 0 if q is irrational and is given by a complicated explicit formula if q is rational.
For q = 1, 2, 3, 4 our formula gives a+q = 2, 4/3, 3/8, 0 and a−q = 0, 0, −9/8, −4/3.
As two examples, least square fits as in §1 except with the exponent fixed at 3/2

give
∑+

λ<T w1(λ) ≈ 2 · 0.05966T 3/2 and
∑−

λ<T w4(λ) ≈ −4/3 · 0.05984T 3/2. These

numerics compare well with 1/(3π3/2) ≈ 0.05986.
We expect this approach will give similar results for ditch avoidance of λ coming

from classical Maass forms of any level and character. A promising future direction
is to see what the Selberg trace formula gives for larger groups, such as congruence
subgroups of SL3(Z) as in §2 and §3. Note that the explanation of ditch avoidance
via the Selberg trace formula does not make direct reference to L-functions or their
zeros! Thus one is still in search of an appropriate tool for rigorously understanding
congruence bias.
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