
The Kodaira dimension of Hilbert modular threefolds
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Abstract. Following a method introduced by Thomas-Vasquez and devel-
oped by Grundman, we prove that many Hilbert modular threefolds of geo-

metric genus 0 and 1 are of general type, and that some are of nonnegative
Kodaira dimension. The new ingredient is a detailed study of the geometry

and combinatorics of totally positive integral elements x of a fractional ideal

I in a totally real number field K with the property that trxy < min Itry for
some y ≫ 0 ∈ K.

1. Introduction

This paper is about the birational geometry, and in particular the Kodaira
dimension, of Hilbert modular varieties. We begin by recalling the definition of
these varieties as complex orbifolds, as in [30, Chapter 1], [8, §2.2]. Let K be a
totally real number field of degree d. The standard formula

(
a b
c d

)
z = az+b

cz+d gives

an action of GL+
2 (R) on the upper half-plane H. The product of the d embeddings

K ↪→ R gives an injection PSL2(OK) ↪→ GL+
2 (R)d whose image is discrete and

acts on Hd properly discontinuously and with finite stabilizers; thus the quotient
inherits a structure of complex orbifold from Hd, which is the most basic Hilbert
modular variety.

Remark 1.1. It is sometimes important to consider a quotient by PGL+
2 (OK),

the subgroup of GL2(OK) consisting of matrices whose determinant is a totally
positive unit, rather than PSL2. These groups are the same when the class number
and narrow class number of K are equal, but if ε is a totally positive unit that is
not a square then ( ε 0

0 1 ) represents an element of PGL+
2 not in PSL2. Again the

quotient is a complex orbifold of dimension d.

Let A be a fractional ideal of OK and consider Aut(OK ⊕ A). This can be
viewed as a group of matrices

(
a b
c d

)
, where a, d ∈ OK , b ∈ A−1, c ∈ A and where

the determinant belongs to O×
K . We thus write PSL(OK ⊕A),PGL+(OK ⊕A) for

the subgroups of Aut(OK ⊕ A) for which the determinant is the square of a unit,
respectively a totally positive unit, modulo the scalar matrices.

We state some results from [30, I.4] on these groups. If A is generated by a
totally positive element x+ ∈ K, then PSL(OK⊕A) is conjugate to PSL2 by

(
x+ 0
0 1

)
,

which identifies the action of PSL2 on Hd with that of PSL(OK ⊕A). Similarly, if
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2 ADAM LOGAN

A = I2, then the two groups are conjugate by a matrix of determinant 1 whose two
columns belong to I, I−1. On the other hand, the groups PSL(OK ⊕A),PSL(OK ⊕
B) are not conjugate in GL+

2 (K) if AB−1 is not of the form TI2, where T is a
narrowly principal ideal. Thus the conjugacy classes of groups of this form are in
bijection with the genera of K. Similarly for PGL+.

Definition 1.2. [2, (2.1.4)] Let I be a nonzero ideal of OK and let A be a frac-

tional ideal. Let Γ0(I;A), Γ̂0(I;A) be the subgroups of PSL(OK ⊕A),PGL+(OK ⊕
A) respectively consisting of matrices whose lower left entry belongs to AI. These
are subgroups of finite index, so we again obtain a complex orbifold as the quo-
tient. This parametrizes abelian d-folds with a particular kind of action of OK and
a distinguished OK-submodule of the torsion isomorphic to OK/I.

Definition 1.3. Let K be a totally real number field and Γ a subgroup of
finite index of PGL+

2 (OK) as above. The quotient Γ\Hd is the Hilbert modular
variety for the group Γ.

A priori this is only a complex orbifold, but in fact it has an algebraic structure
by [30, Theorem II.7.1].

Notation 1.4. The Hilbert modular variety for the group Γ0(I;A), where I
is an ideal in OK , will be denoted HK,I;A. When A is (1) we will generally omit it
from the notation, writing HK,I . Similarly if I = (1) we may write HK;A, and if
both are (1) we simply write HK .

These quotients are not compact; they are compactified by adjoining finitely
many points called cusps. Since our main concern is with birational geometry,
we will not always distinguish between the open and compactified varieties, refer-
ring to both as Hilbert modular varieties. The cusps of HK are in bijection with
PSL2(OK)\P1(K), or equivalently with ideal classes of OK . Giving a resolution of
the cusps is essentially equivalent to decomposing a fundamental domain for the
action of O×

K,+, the totally positive units of OK , on the totally positive cone in

K ⊗ R, into cones spanned by bases for ideals. In the case [K : Q] = 2 this is
treated in great detail in [30, Chapter 2]; in [25] the problem is discussed briefly
for arbitrary degree in Section 1 and studied much more closely in the rest of the
paper. In contrast to the case [K : Q] = 2 where there is a canonical way to subdi-
vide a cone in R2, there are many different ways to resolve the cusp singularities in
dimension greater than 2, none of which is obviously the most natural. As pointed
out in [30, p. 36], this is related to the lack of a single minimal model for varieties
of dimension greater than 2; for discussion of a related situation the reader may
wish to consult [20, Chapter 14].

In addition, there are singularities that arise from the isolated fixed points of
elements of Γ on Hd. For [K : Q] fixed there are only finitely many such types and
they are much more tractable than the cusps.

1.1. Previous results. Recall the definitions of Kodaira dimension κV and
general type [20, Definition 1-5-2, Proposition 1-5-3]:

Notation 1.5. Let V be a smooth variety. The canonical line bundle of V
will be denoted KV ; since we are not concerned with specific divisors D with
O(D) ∼= KV , we write its powers as K⊗n

V rather than nKV .

16 Jun 2025 18:56:39 PDT
250123-Logan Version 3 - Submitted to LuCaNT



THE KODAIRA DIMENSION OF HILBERT MODULAR THREEFOLDS 3

Definition 1.6. Let V be an irreducible variety and V ′ a smooth variety
birationally equivalent to V (the choice does not matter). If |K⊗n

V ′ | = 0 for all

n > 0, then we define κV = −∞. If |K⊗n
V ′ | ≤ 1 for all n > 0 with equality for

at least one n, then define κV = 0. Otherwise, there exist positive integers k, n
and positive real numbers c, C such that cmk < dim |K⊗mn

V ′ | < Cmk for sufficiently
large m, and we define κV = k. If κV = dimV then V is of general type.

We now introduce two well-studied families of cubic fields.

Definition 1.7. [25, §3.I (*), (3.2)] Let 1 ≤ r ≤ s− 2. Define Kr,s to be the
field Q(αr,s), where αr,s satisfies x(x− r)(x− s)− 1 = 0. Let n > 0. Define Kn to
be Q(αn), where αn is a root of x3 + (n+ 1)x2 + (n− 2)x− 1.

These fields have easily constructed sets of units of maximal rank: the Kn are
Galois and so αn and ασ

n are units where σ ∈ Aut(Kn), while αr,s, αr,s− r ∈ O×
Kr,s

.

This implies in some cases that the singularities of the Hilbert modular varieties
associated to them are relatively tractable: see Remark 2.5.

Knöller proves the following [16, Satz 1, Satz 2]:

Theorem 1.8. (1) If OKn is generated by αn (this holds if n2 − n + 7
is squarefree) and has class number 1 and n > 4, then HKn is of general
type.

(2) If OKr,s
is generated by αr,s and has class number 1 and 3ζKr,s

(2)DKr,s
>

4π6, and r > 1, then HKr,s
is of general type.

Every HK that Knöller proves to be of general type satisfies pg(HK) > 1.
Grundman proved the following statement:

Theorem 1.9. [10, Theorem 3], [11, Theorem 3] Let K ∈ {K1,7,K2,5,K3,5}.
Then HK is of geometric genus 0 and positive Kodaira dimension.

This was surprising because a Hilbert modular surface for level 1 is rational if
and only if its geometric genus is 0 [30, Proposition VII.6.1].

1.2. Summary of results. We now state our main result.

Theorem 6.6, 6.7. (1) Let K be a cubic field with discriminant ≥ 473
such the geometric genus of HK is 0 or 1. Then HK is of general type,
unless possibly K ∼= Q[x]/(x3 − 7x − 5) is the cubic field with LMFDB
label 3.3.697.1.

(2) Let K be a cubic field such that the geometric genus of HK is 0 or 1. Let A
be an ideal that is not narrowly principal (this implies that h+

K = 2). Then
HK;A is of general type, except possibly for the field 3.3.229.1 defined by
x3 − 4x− 1.

We are able to prove something about three more fields:

Proposition 6.8, 6.11. (1) Let K1 be the cubic field 3.3.404.1 = Q(α),
where α is a root of x3 − x2 − 5x− 1. Then κHK

≥ 0.
(2) Let K2 be the cubic field 3.3.469.1 = Q(α), where α is a root of x3 − x2 −

5x+ 4. Then κHK
> 0.

(3) Let K3 be the cubic field 3.3.229.1 = Q(α), where α is a root of x3−4x−1,
and let A represent the nonprincipal genus. Then κHK;A

≥ 0.

16 Jun 2025 18:56:39 PDT
250123-Logan Version 3 - Submitted to LuCaNT

https://www.lmfdb.org/NumberField/3.3.697.1
https://www.lmfdb.org/NumberField/3.3.229.1
https://www.lmfdb.org/NumberField/3.3.404.1
https://www.lmfdb.org/NumberField/3.3.469.1
https://www.lmfdb.org/NumberField/3.3.229.1
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Remark 1.10. It would seem more natural to study the HK;A with pg ≤ 1
rather than the HK;A for which pg(HK) ≤ 1. In Appendix A we will show that
when K is a cubic field the dimensions of the spaces of modular forms for all of the
Γ0(I;A) are equal. Since the number of cusps is the same as well, the geometric
genera are equal, as we will see in Remark 1.25. So these conditions are equivalent.

Remark 1.11. Our method determines two constants c1(K) = −2ζK(−1), c2(K)
associated to a field such that if c1(K) > c2(K) then HK is of general type. Both
of these grow without extreme oscillations (see Tables 2, 3), and for the cubic
field 3.3.1937.1 of maximal discriminant for which pg(HK) ≤ 1 we already have
c1(K) = 28, c2(K) = 397/30. Therefore we believe that if pg(HK) > 1 (which
already implies that κHK

> 0) then all HK;A are of general type, and that this can
be verified for all such K by the methods of this paper. In order to prove this it
would be necessary to verify that c1 > c2 for all cubic fields violating the inequality
DKζK(2)

hR ≥ 23−2π3 of [9, Corollary 10] and all choices of A. The amount of com-
puter time required is substantial but not prohibitive, especially since it appears
that this inequality fails for only 421 cubic fields. See Section 6.1 for more details.

Previous work on the Kodaira dimension of Hilbert modular varieties of di-
mension greater than 2 has largely been restricted to level 1, perhaps because it is
easier to compute invariants under this assumption and because κHK,I;A

≥ κHK;A

(in characteristic 0 this is a general statement about dominant maps). In Proposi-
tions 7.11, 7.13 we classify the HK,I for which the geometric genus pg is at most 1.
We would like to prove results analogous to those of [14], studying the Kodaira di-
mensions of the HK,I of geometric genus at most 1. We can show that many of the
HK,I are of general type even when we cannot prove this for HK . Here is a sample
of our results. We use pq to refer to a prime of norm q; it does not matter which
one we choose because of the Galois automorphism. The full result is presented in
Propositions 7.11 to 7.14. See also Tables 6, 7.

Theorem 7.6. Let K = Q(ζ7)
+
. The Hilbert modular variety HK,I is of

geometric genus 0 if and only if I ∈ {(1), p7, (2), p13, p29, p43}, and 1 if and only if
I ∈ {(3), p41, p27, 2p7, (4), p71, p7p13, p97, p113, p127, p213}.

Proposition 7.12, 7.17. All of these varieties are of general type, with the
possible exceptions of I ∈ {(1), p7, (2)}. We have κHK,(2)

> 0.

Remark 1.12. We would like to study the varieties not shown to be of general
type and understand their geometry explicitly as in [19]. However, this seems to
be a very difficult problem, and we have no new results in this direction.

1.3. Method for studying the Kodaira dimension of Hilbert modular
threefolds. In order to prove that Hilbert modular threefolds are of general type,
we will show that powers of the canonical bundle have many sections. Here we
describe these sections as Hilbert modular forms; later, in Section 2, we explain
which ones belong to H0(nK), and in Sections 3–5 we will give methods for exact
and asymptotic calculation of the dimensions. In Sections 6, 7 we present the
results. The statements of this section and Section 2 are not new, going back to
[16]. However, results like those stated in Section 1.2 and proved in subsequent
sections have previously appeared only in special cases.

Notation 1.13. Fix an ordering of the d real embeddings πi : K ↪→ R. For
x ∈ K and 1 ≤ i ≤ d, let xi = πi(x). For z ∈ Hd, let zi be the ith component.
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Definition 1.14. [30, Definition I.6.1] Let k be a nonnegative even integer.
A Hilbert modular form of (parallel) weight 2k for a group Γ on an open subset
U ⊆ Hd is a holomorphic function satisfying

f(γz) =

(
d∏

i=1

(cizi + di)
2k(det γ)−k

i

)
f(z)

for all pairs (γ, z) with γ ∈ Γ and z, γz ∈ U . We denote the space of Hilbert
modular forms of weight 2k by M2k(U ; Γ), omitting U or Γ when these are clear or
unimportant.

Remark 1.15. The books [8, 30] are invaluable general references for Hilbert
modular forms and (for the second) Hilbert modular varieties. Magma [5] offers
built-in functions for computing dimensions of spaces of Hilbert modular forms and
coefficients of their Fourier expansions, though it is limited to certain levels for
fields of odd degree. The article [2] gives a more advanced introduction to some
computational issues for Hilbert modular forms and varieties, especially in degree
2, and to the use of the more recent software [1] that performs a wide range of
essential computations for Hilbert modular forms over quadratic fields and Hilbert
modular surfaces.

Remark 1.16. An easy calculation [30, Lemma III.3.1] shows that if f is a
Hilbert modular form of weight 2k then f(z1, . . . , zn)(dz1 . . . dzn)

⊗k is invariant

under Γ. In particular, if Γ\U is nonsingular then H0(Γ\U,K⊗k
U ) is naturally iden-

tified with M2k(U ; Γ). However, this does not imply that the space H0(HK ,K⊗k
U )

of modular forms of weight k can be identified with M2k(Γ), because there are
additional conditions at the cusps and elliptic points for a modular form to give
a section of K⊗k

U . Rather, as in the classical case, the space of modular forms

of weight 2k is identified with H0(HK , (K(log cusps))⊗k), and Proj of the ring of
modular forms is the Baily-Borel compactification of HK [30, Theorem II.7.1]. In
particular HK is always of log general type.

We recall some facts about the rate of growth of the dimension of M2k. Al-
though an exact formula for the dimension requires a detailed examination of the
elliptic points (Definition 1.19), the asymptotic formula does not require this. The
starting point is a result of Siegel:

Theorem 1.17. [30, Theorem IV.1.1] Relative to the standard hyperbolic met-
ric on Hd, the volume of PSL2(OK)\Hd is equal to 2ζk(−1).

Specializing [22, Theorem 11], Thomas and Vasquez give a formula for the
dimension of the space of modular forms for PSL2(OK) and its torsion-free finite-
index subgroups. The following well-known result follows from this:

Proposition 1.18. Let Γ be a group commensurable with PSL2(OK), where
K is a totally real field of degree d. Then the dimension of the space of cusp forms
of weight 2k is asymptotically equal to 2ζK(−1)(−k)d[PSL2(OK) : Γ].

Proof. In the case where Γ = PSL2(OK), this follows from [27, (2.2)], since
in their terminology PSL2(OK) is always of modular type. To pass to a commen-
surable subgroup we use [8, Theorem II.3.5] to see that the leading coefficient is
proportional to [PSL2(OK) : Γ], it being clear that the terms in the formula other
than vol(Γ\Hn)(2r − 1)n are of lower order. □
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We now consider the special points of Hilbert modular varieties, namely fixed
points of nonidentity elements of Γ and the cusps used to compactify Γ\Hd. The
first of these must be studied in order to obtain an exact formula for the dimension of
the space of modular forms, while the second are vital for estimating the difference
between this dimension and the dimension of H0 of powers of the canonical line
bundle.

Definition 1.19. [30, p. 15] An elliptic point of HK,I;A is the image of the
fixed point of an element of Γ0(I;A) of finite order greater than 1.

Notation 1.20. Let CK,I;A, EK,I;A be the sets of cusps and elliptic points of
HK,I;A respectively.

Definition 1.21. [30, Definition I.6.2] Let U be an open subset of Hd\EK,I;A.
Let CU be the subset of CK,I;A consisting of cusps such that U contains a punc-
tured neighbourhood of some representative of C, and similarly for EU and elliptic
points. A Hilbert cusp form on U is a Hilbert modular form on U that extends to
a holomorphic function on U ∪ Γ\(CU ∪ EU ) that is 0 on all cusps of CU .

Theorem 1.22. [15, Section 3.6, Lemma] For a resolution of singularities

H̃K,I;A of HK,I;A, the sections of KH̃K,I;A
are precisely the Hilbert cusp forms of

weight 2.

Hirzebruch only states this for quadratic fields, but the proof does not use this
assumption. This theorem does not extend to powers of KH̃K,I;A

; the sections of

nK are not simply the cusp forms of weight 2n. To describe the situation, we
introduce some further notation.

Notation 1.23. Let P be a cusp or elliptic point for H. Let UP be a small
punctured neighbourhood of P (a complex manifold) and let VP = UP ∪ {P}. Let
ṼP be any resolution of the singular point P of VP (nothing depends on the choice).

The natural injection H0(ṼP ,K
⊗q

ṼP
) ↪→ H0(UP ,K

⊗q
UP

) will be denoted eP ;q.

Definition 1.24. [16, p. 6] The qth defect δP (q) of P is dim coker eP ;q.

Remark 1.25. We have δP (0) = 0 for all P ; for elliptic points this is the case
m = 0 of [16, Satz 2.0], while for cusps it is a direct consequence of [16, Satz 2.4]
(see Definition 2.1 for an explanation of the notation). For q = 1, Theorem 1.22
shows that δP (1) = 1 if P is a cusp, at least if [K : Q] > 1. In addition, if P
is an elliptic point then δP (1) = 0. This was first shown by Freitag; it is clearly
explained on [30, p. 56].

Now let S = CK,I;A ∪ EK,I;A and let U = HK,I;A \ S, which is a smooth

complex manifold. For each P ∈ S, let ṼP be a resolution of U ∪P , and let H̃K,I;A

be a simultaneous resolution of all the singularities, obtained by identifying the
ṼP along the open subsets identified with U . We then have H0(H̃K,I;A,K

⊗q) =⋂
P∈S im eP ;q. It follows that h0(H̃K,I;A,K

⊗q) ≥ dimM2q −
∑

P∈S δP (q), since

M2q = h0(HK,I;A \ S,K⊗q) (in contrast to the case K = Q, where we need an
additional condition to ensure that modular forms are holomorphic at the cusps;
see [30, Section I.6]). We thus obtain a lower bound for h0(K⊗q), namely

(1.1) h0(K⊗q) ≥ dimM2q −
∑
P∈S

δP (q).
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If we can prove that this lower bound is positive (resp. greater than 1) for some
q, then we have shown that the Kodaira dimension of the Hilbert modular variety
is nonnegative (resp. positive). If we can estimate the lower bound as being at
least cqd for some c > 0, the variety is of general type. Grundman did this and
essentially proved in [10, Theorem 3], [11, Theorem 3] that the component of the
Hilbert modular threefolds corresponding to the principal genus for 3.3.697.1 is of
positive Kodaira dimension, while for 3.3.761.1, 3.3.985.1 it is of general type.

Remark 1.26. Grundman states only that the plurigenera are not equal to 0
for the principal genus, concluding that the varieties are not rational. However, the
statement that HK is of general type for the second and third fields follows from
her results. We will explain this in Example 6.2 and Remark 6.3.
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2. Defects

Thomas and Vasquez give a formula [27, Theorem 3.10] for the dimension of
M2q for certain special subgroups of PSL2(K). A general formula for Γ0(I) does
not seem to appear in one single place in the literature, but can be extracted from
[31, 39.10] and [2, 5.1]. The calculation is implemented in a Magma script [18]
(I thank John Voight for many clarifying comments). This leaves the problem of
computing the defects.

Thomas [28, Section 1], referring to [16], gives a method for evaluating the
defect in terms of a count of elements with multiples of bounded trace. We give
the details in Definition 2.1.

Definition 2.1. [16] Let M ⊂ K be a free abelian subgroup of rank d =
[K : Q] and V ⊆ O×

K,+ a group of totally positive units preserving M . Following
Knöller, we consider the cusp singularity at the image of ∞ in the quotient of
Hd ∪ {∞} by the group of matrices {( v g

0 1 ) : v ∈ V, g ∈ M}: we refer to this as a
cusp of type (M,V ). Let δ(M,V )(q) be the qth defect of a cusp of type (M,V ). Let

M̂ = {x ∈ K : trxm ∈ Z for all m ∈ M} be the dual of M with respect to the

trace. For q ∈ N, let Λq(M) = {x ∈ M̂+ : trxm < q for some m ∈ M+} ∪ {0}.

For any such M , a suitable subgroup V exists:

Lemma 2.2. Let M ⊂ K be a free abelian subgroup of rank d. The subgroup of
O×

K,+ preserving M is of finite index in O×
K,+.
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Proof. By multiplying by a suitable positive integer we may assume that
M ⊂ OK . Then O×

K,+ acts on subgroups N ⊆ OK with OK/M ∼= OK/N . There
are finitely many such subgroups, so the stabilizer of any one of them is of finite
index. □

In [16, Satz 2.4] Knöller proves:

Theorem 2.3. The qth defect of a cusp of type (M,V ) is equal to #(Λq(M)/V ).

Remark 2.4. In particular, we always have Λ1 = {0} and so δM,V (1) = 1.
This is closely related to Theorem 1.22.

Remark 2.5. Thomas states that it is difficult to calculate δM,V (q) in general
and imposes an additional restriction that implies that every element of Λq(OK)/V

is represented by x ∈ ÔK,+ with trx < q. Later works of Thomas-Vasquez [25]
and Grundman [10, 11] follow Thomas in imposing this restriction. This holds for
the Kr,s and Kn (Definition 1.7) under the additional hypothesis that a root of the
given defining polynomial generates the ring of integers [25, Section 3]. In these
cases they construct explicit cusp resolutions: see [25, Section 3], [10, Section 6].

In this work we will describe practical methods for computing δM,V without
an explicit cusp resolution. This allows us to prove results analogous to those of
[25, 11] for general totally real cubic fields.

Question 2.6. Let K be a real cubic field such that for all q, every element of
Λq(OK)/V is represented by an element with trace less than q. Must K belong to
one of the families Kr,s or Kn? Is there a similar classification for fields of higher
degree?

Remark 2.7. The definition of the fields Kr,s can be extended to arbitrary
degree, defining Kr1,...,rn to be the field of degree n+ 1 defined by the polynomial

x
∏n

i=1(x−ri)−1. For n = 1, we obtain the quadratic fields Q(
√
n2 + 4). However,

these do not necessarily have the property of Question 2.6. For example, with

n = 16 this field is Q(
√
65), in which 9+

√
65

2 · 9−
√
65

2 = 4. One easily concludes

that 9+
√
65

2 is an element of Λ9(OK) having no multiple by a totally positive unit
of trace less than 9. In Section 4 we will present systematic methods to find such
elements or prove that they do not exist.

We now return to describe the defects of cyclic quotient singularities, following
[30, II.6, III.3]. Van der Geer only treats the case of dimension 2, but his methods
apply without change to the general situation. Thus we only state the results.

Notation 2.8. Let a1, . . . , an be positive integers relatively prime to m and
less than m. Let L be the sublattice of Zn consisting of vectors (x1, . . . , xn) with
m|
∑n

i=1 aixi. The dual lattice, which is generated over Zn by (a1, . . . , an)/m, is
denoted M . For k = 1, . . . ,m − 1 let Pk = 1

m (kaj mod m)nj=1 ∈ M , and define a
simplex Tk by the conditions x1, . . . , xn ≥ 1 and

∑
i Pkixi < 1. (Note that Tk = ∅

if
∑

i Pki ≥ 1.) Let T = ∪iTi and let T (q) be T scaled up by q.

Definition 2.9. Let m ∈ Z+ and let a1, . . . , an be positive integers less than
m and relatively prime to m. Let the cyclic group Cm of order m act on An such
that a generator acts by (x1, . . . , xn) → (µa1

mx1, . . . , µ
an
m xn). A singularity locally

isomorphic to that of An/Cm at the origin is called a cyclic quotient singularity of
type (a1, . . . , an;m).
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THE KODAIRA DIMENSION OF HILBERT MODULAR THREEFOLDS 9

Figure 1. Simplices that describe the defects of (1, 3, 2; 7) and
(1, 2, 4; 9)-singularities. All simplices are defined by the condition
that all coordinates are at least 1 and by one additional inequality.
On the left, the choice k = 1 gives a single simplex defined by
the inequality x + 3y + 2z ≤ 7. On the right, the blue simplex is
defined by x + 2y + 4z ≤ 9 and the red simplex (contained in it)
by 5x+ y + 2z ≤ 9. Note that the scales are different.

Such a singularity is isolated by [21, Corollary 2.2].

Theorem 2.10. [30, p. 56] The qth defect of a cyclic quotient singularity of
type (a1, . . . , an;m) is the number of L-points of T (q).

Corollary 2.11. Asymptotically the qth defect is equal to volT
m qd +O(qd−1).

□

Example 2.12. We consider the elliptic points of order 7, 9 that arise forQ(ζ7)
+

and Q(ζ9)
+
. For the former, we have one point of each of the types (1,±3,±2; 7)

by [26, Proposition 2.10 (ii)]. The (1, 4, 2; 7) point has all defects 0, while the
other three are isomorphic. Indeed, given a (1, 3, 2; 7)-singularity, we may replace
the generator g of C7 by g4 to see that it is also a (4, 5, 1; 7)-singularity, or by
g5 to see that it is a singularity of type (5, 1, 3; 7). The order of the ai is of no
importance. We quickly compute that for each of them there is a single simplex of
volume 1/36, giving an asymptotic of q3/252 for the qth defect. The first 10 defects
are 0, 0, 0, 0, 0, 0, 1, 1, 2, 3.

Similarly, for Q(ζ9)
+
, according to [26, Proposition 2.10 (iii)] the types are

(1,±2,±4; 9), each occurring once. All defects are 0 for the point of type (1, 7, 4; 9)
and again the other three are equivalent. For (1, 2, 4; 9) and those isomorphic to
it there are two simplices of volume 1/6, 1/60, but the second is contained in the
first so the volume of the union is just 1/6. So the asymptotic is q3/54; the initial
defects come to 0, 0, 0, 0, 1, 2, 4, 6, 10, 14.

We display the relevant simplices in Figure 1.

Remark 2.13. As pointed out in [16, Satz 2.0], the defects of cyclic quotient
singularities of order 2, 3 on Hilbert modular threefolds are 0; this is immediate from
Theorem 2.10 as well. Thus, in light of the classification of cyclic quotient singular-
ities of Hilbert modular varieties of cubic fields [27, Theorem 2.12] (less accessibly,
though earlier, in [13]), the cyclic quotient singularities make no contribution to

the defect for fields other than Q(ζ7)
+
,Q(ζ9)

+
.
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10 ADAM LOGAN

I thank the referee for pointing out that this is analogous to the situation for
quadratic fields, for which the fields of smallest discriminant Q(

√
5),Q(

√
2),Q(

√
3)

admit special quotient singularities that need to be considered separately (these
are described in [30, Table 1.III]). In general [29, (7)] gives all totally real fields
for which there are elliptic points with nonvanishing defects. Excluding quadratic
fields and quartic fields containing

√
3, the list is finite.

In the next two sections of this paper we describe methods for calculating
the sets Λq(M)/V and estimating their asymptotic growth that can be applied to
general totally real fields. The most interesting case for us is that of M = OK , V =
O×

K,+, which is associated to the single cusp of HK when K has class number 1,
but imposing this restriction does not simplify the method, and we will consider
more general singularities in Sections 6,7.

3. Basic algorithms

Here we describe the algorithms that underlie our computations. We assume
that the standard invariants of algebraic number theory can be computed; in other
words, given a number field K, we assume that its ring of integers, different, class
group, and unit group can be calculated, and that the prime factorization of a
fractional ideal can be determined. Such calculations can be performed by various
symbolic computation systems, such as Magma (used in writing the paper and
needed to run the accompanying scripts) and PARI/GP [24]. In addition to these,
we need algorithms to find the elements of an ideal I of OK whose real embeddings
satisfy certain inequalities and to find the volume of a rational polytope.

3.1. Rational points in a polytope.

Definition 3.1. A rational polytope P in Rn is an intersection of half-spaces
defined by linear inequalities

∑n
i=1 aixi ≤ c with ai, c ∈ Q whose n-dimensional

Lebesgue measure is positive and finite.

Remark 3.2. We will assume that the volume of a rational polytope can be
computed given the facets. For fixed dimension, this can be done in polynomial time
[6, p. 4033]; in this paper we are always in R3. By [29, Theorem 2], as extended in
Theorem 6.12 all components of Hilbert modular varieties are of general type for
fields of degree greater than 6, so in the application to Hilbert modular varieties we
never need to go beyond R6 and the volume can be computed in polynomial time.

In order to find the integral points in a general (not necessarily rational) poly-
tope, we begin by finding a rational polytope that contains it. This can be done
from crude bounds on the individual coordinates of every point of the polytope.
More sophisticated algorithms exist and have been implemented in software [3],
but we use a simple method to find the integral points in a rational polytope:

Algorithm 3.3. Given a rational polytope P , determine its integral points.

(1) If dimP = 1 the problem is trivial.
(2) For each coordinate xi, determine lower and upper bounds mi,Mi for xi.

If for any i there is only one integer in [mi,Mi], then set xi to that integer
and reduce the dimension by 1.

(3) Choose the i that maximizes Mi−mi and ci ∈ (mi,Mi)\Z (in practice one
chooses ci near (mi + Mi)/2). Apply the algorithm to the two polytopes
P ∩ (xi ≥ ⌈ci⌉), P ∩ (xi ≥ ⌊ci⌋).
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Remark 3.4. We have stated this for integral points, but the same algorithm
can be used to determine the P -points of any rational lattice, since one can choose
a rational change of coordinates taking such a lattice to Zn, and any such change
takes a rational polytope to a rational polytope.

Remark 3.5. Magma provides a built-in function to enumerate the integral
points in a polytope; however, it is often slow. Empirically we have found that
combining Algorithm 3.3 with calls to the built-in function when the polytope is
small enough gives better performance than either one does individually.

3.2. Union of polytopes. A second important problem is to compute the
volume of a union of rational polytopes ∪k

i=1Pi. We use the following algorithm.

Algorithm 3.6. Given a finite set of polytopes P1, . . . , Pk, find v = vol(∪k
i=1Pi).

(1) Sort the Pi in order of increasing volume to obtain a list P0 = P. For each
pair (i, j) with i < j, determine whether Pi ⊆ Pj, and if so remove Pi from
P. For each pair (i, j) with i < j, determine whether vol(Pi ∩ Pj) > 0,
and if so add it to the list L of pairs.

(2) While L is nonempty, repeat the following steps:
(a) Choose an element (i, j).
(b) Choose a face F of Pi that contains points of the interior of Pj (if

there is no such face then (i, j) /∈ L). Let P+, P− be the intersections
of Pj with the half-spaces defined by F .

(c) Remove Pj from P and all pairs containing j from L.
(d) Determine whether P+, P− are contained in any element of P.
(e) For each P ∈ {P+, P−} not contained in any element of P, add P to

P, and add all pairs (i,±) such that Pi∩P has positive volume to L.
(3) Now that L is empty, return

∑
Pi∈P volPi.

Remark 3.7. To determine whether Pi ⊆ Pj in Step 1 and whether P± ⊆ P in
Step 2d, it suffices to determine whether volP = vol(P± ∩P ). Since our polytopes
are given by linear inequalities, we can intersect them simply by concatenating the
lists of inequalities. Magma handles these issues without difficulty.

Theorem 3.8. Algorithm 3.6 terminates and returns the volume of ∪k
i=1Pi.

Proof. To prove that the algorithm terminates, let Π be the set of polytopes
obtained by intersecting an element of P0 with a collection of half-spaces determined
by the facets of elements of P0. The set Π is finite and every polyhedron considered
in the course of the algorithm belongs to Π. Further, every pass through the while-
loop (Steps 2a–2e) either increases the number of elements of P (if neither P+ nor
P− is contained in any other element of P) or decreases the sum of volumes of
pairwise overlaps (otherwise). Again, the order of P is bounded by |Π| and the set
of possible sums of volumes of pairwise overlaps is finite, being a subset of the set
of sums of subsets of the intersections of pairs of elements of Π. Thus the algorithm
must terminate.

We now show that the algorithm is correct. It is clear that a pass through the
loop cannot alter ∪Pi∈PPi, so the volume does not change, and that when L is
empty the intersection of any two elements of P has volume 0. Thus by inclusion-
exclusion the volume is

∑
Pi∈P volPi at that point. □
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12 ADAM LOGAN

Remark 3.9. The upper bound on running time implied by an explicit version
of the argument for termination given just above is horrifyingly large. However, in
practice the running time seems quite reasonable: see Section 6 for some examples.

4. Trace-minimal elements and reducers

In this section we present the geometric and combinatorial results that underlie
our estimates for the defect of the cusp singularities of a Hilbert modular variety,
in particular a threefold. We use three basic concepts in the geometry of the ring
of integers in a totally real number field, which we introduce here.

Definition 4.1. Let K be a totally real number field and let d = [K : Q]; we
write x ≫ 0 to mean that x is totally positive and we writeK+ for {x ∈ K : x ≫ 0}.
Let U+ = {x ∈ O×

K : x ≫ 0} be the group of totally positive units of K. Given
x ∈ K, we say that x is trace-minimal if trux ≥ trx for all u ∈ U+.

Let b ∈ R+, and for x ∈ K+, let x1, . . . , xd be the real embeddings of x. If
0 < maxi xi/mini xi ≤ b we say that x is b-balanced.

Finally, if I is a fractional ideal and x ≫ 0 ∈ I has the property that trxy <
min(Q+ ∩ I) tr y for some trace-minimal y ∈ K, then x is a reducer relative to I,
or an I-reducer. We abbreviate min(Q+ ∩ I) to min I. When I = OK we refer
simply to a reducer. The set of I-reducers will be denoted RI . We also denote
RI ∪ {min I} by R′

I .

Example 4.2. In Q(
√
7), the equality (3−

√
7)(3+

√
7) = 2 shows that 3±

√
7

are reducers. In Remark 2.7 we showed that 9±
√
65

2 are reducers in Q(
√
65).

Remark 4.3. Not all ideals have reducers. In particular, the key property of
the fields considered by Thomas-Vasquez and Grundman in [25, 10, 11] is that
(1) has no reducers. In general, the larger the fundamental units of the number
field, the less the units are capable of reducing its totally positive elements, and the
more reducers it will have. For example, in Q(

√
46), where the fundamental unit is

24335 + 3588
√
46, there are 3542 reducers. Intuitively this is because a field with

large fundamental units has a large fundamental domain for their action on the
positive orthant, which allows for many elements of small trace but not too small
norm which are divisible only by elements of larger trace. Note that if r ∈ Q+ then
RrI = rRI .

4.1. Trace-minimal and balanced elements. We now prove some basic
properties of these definitions. Some of these results, in particular Lemma 4.6,
Lemma 4.9, Corollary 4.10, are essentially contained in [23, Lemma 3], and our
proofs are closely related as well.

Definition 4.4. For this entire section, let us fix a set S± of units of OK in
bijection with the set of proper nonempty subsets of the set of real places of K
such that the unit uR corresponding to a subset R is totally positive and greater
than 1 exactly at the places in R. In particular, for 1 ≤ i ≤ d let iu ∈ S± be such
that iuj > 1 if and only if j = i (recall that iuj refers to the jth real embedding
of iu). In addition, let Sd = {v1, . . . , vd}, where vi is a unit that is totally positive
and greater than d in the ith real embedding.

Remark 4.5. The set S± can be found by standard lattice techniques. In the
log embedding of the units, we are looking for units with given negative coordinates.
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One way to find such a unit is simply to enumerate units up to a given Euclidean
norm in this embedding until the desired one is found. The argument does not
depend on the choice, but the bounds will be better if the iui are as small as
possible. Constructing Sd is easy.

Lemma 4.6. A trace-minimal element is totally positive or 0.

Proof. Let x ∈ K. If x is totally negative, choose i such that |xi| is maximal;
then tr(vix) < dxi < trx. If x is positive in some real embeddings and negative in
others, let uN be as in Definition 4.4, where N is the set of real embeddings where
x is negative. Then truNx < trx. □

Notation 4.7. Let bK = maxi ̸=j
iui−1
1−iuj

.

Lemma 4.8. Every totally positive element of K that is not bK-balanced is
reduced by one of the iu.

Proof. Let x ≫ 0 be trace-minimal. Suppose that xi is the smallest embed-
ding of x and xj is the largest. Then

trx− tr(iux) =

d∑
k=1

(x− iux)k ≥ (x− iux)i +(x− iux)j = xi(1− iui)+ xj(1− iuj).

Now bK ≥ iui−1
1−iuj

, so if
xj

xi
> bK this is positive, and so x is reduced by iu. □

We now describe a finite set SK of units such that every totally positive element
that is not trace-minimal is reduced by one of them.

Lemma 4.9. Let bK be the bound of Notation 4.7. Let SK consist of the units iu
of Definition 4.4, together with all totally positive units all of whose real embeddings
are at most dbK . If x ≫ 0 ∈ K satisfies trux ≥ trx for all u ∈ SK , then x is
trace-minimal.

Proof. If x is not bK-balanced, then by Lemma 4.8 it is reduced by one of the

iu, which belongs to SK . Let u be a totally positive unit with ui > dbK for some i.
If x is bK-balanced, we then have trux ≥ dbKxi ≥ dbKxmin ≥ dxmax ≥ trx, where
xmin , xmax are the smallest and largest real embeddings of x, respectively. It follows
that if x is bK-balanced and not trace-minimal, then x is reduced by a unit whose
real embeddings are at most dbK and which therefore belongs to SK . □

We can find the finitely many totally positive units all of whose real embed-
dings are at most dbK : indeed, in the Minkowski embedding x → (log |xi|), these
correspond to lattice points within a compact subset of the hyperplane

∑
i ri = 0.

Thus Algorithm 3.3 applies.

Corollary 4.10. There is a finite set S′
K of totally positive units such that

every element x ∈ K (totally positive or not) that is not trace-minimal satisfies
trux < trx for some u ∈ S′

K .

Proof. The sets SK , S±, and Sd are all finite. We choose S′
K to be their

union. □

We extend the concept of trace-minimality toK⊗QR. If we use a basis forK⊗Q
R given by elements of K, then all of the inequalities defining our polyhedra have
coefficients in Q, so Algorithm 3.3 applies and we can always determine whether
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14 ADAM LOGAN

an integral point in the enlarged rational polytope belongs to the original without
the possibility of error due to round-off.

Corollary 4.11. The set of trace-minimal elements of K ⊗R is a polyhedral
cone with finitely many rational faces. Thus, for q ∈ Q+, the set of such elements
with trx ≤ q is a rational polytope.

Proof. Every element u ∈ S′
K (Corollary 4.10) defines a half-space by trux ≥

trx, and the intersection of these is the trace-minimal cone. □

Remark 4.12. In fact the trace-minimal cone is defined by trux ≥ trx for
u ∈ SK . To see this, note that the two cones have the same intersection with the
totally positive cone. However, every nonzero point of the trace-minimal cone is
interior to the totally positive cone by Lemma 4.8. It follows that the two cones
are equal.

Remark 4.13. Let V ⊆ O×
K,+ be a subgroup of finite index, and say that

x ∈ K+ is V -trace-minimal if tr vx ≥ trx for all v ∈ V . The results and proofs of
this section extend to the slightly more general situation where “trace-minimal” is
replaced by “V -trace-minimal”; for simplicity we do not state these explicitly here.

We summarize the discussion of this section in an algorithm.

Algorithm 4.14. Let V ⊆ O×
K,+ be a subgroup of finite index, where K is a

totally real number field. Determine the V -trace-minimal cone.

(1) For each real place Ri of K, determine a unit iv ∈ V greater than 1 at Ri

and less than 1 at all other real places (see Remark 4.5. Let UV be the set
of these units. Calculate a constant bK,V as in Notation 4.7.

(2) Let SV be the subset of V consisting of units less than or equal to dbK,V

at all real places. Again, this is a standard lattice calculation.
(3) Return ∩u∈SV ∪UV

Hu, where Hu is the half-space defined by trxu ≥ trx.

4.2. Reducers. We now consider the problem of determining the complete
set of I-reducers in a totally real number field.

Lemma 4.15. Let bK be the bound of Notation 4.7. Every I-reducer is at most
(min I)dbK at all real places.

Proof. This follows from the same argument that we used in Lemma 4.9. □

Lemma 4.15 allows one to compute a finite subset of K that contains all the
reducers via Algorithm 3.3, but it does not give a good bound, nor does it allow us
to determine whether an element is in fact a reducer. Thus we analyze the situation
more closely.

Lemma 4.16. Let MK be the trace-minimal cone inside K ⊗ R, and let its
extremal rays be R+vi for 1 ≤ i ≤ m, where vi ∈ K. An element x ∈ I is an
I-reducer if and only if trxvi < min I tr vi for some i.

Proof. The vi are totally positive, so “if” is just the definition. For “only
if”, suppose that trxy < min I tr y with y trace-minimal; by definition we have
y =

∑
i civi with ci ≥ 0. Thus trxy =

∑
i ci trxvi. If trxvi ≥ min I tr vi for all i,

then
min I tr y > trxy =

∑
i

ci trxvi ≥ min I
∑
c

ci tr vi = min I tr y.

This contradiction establishes “only if”. □
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Lemma 4.17. Given v ≫ 0, the elements x ≫ 0 ∈ I with trxv < min I tr v are
naturally in correspondence with the integral points of a simplex.

Proof. The set of such x is the set of integral points of the region in Rd defined

by xi ≥ 0 for all i and
∑d

i=1(xi −min I)vi = 0 that belong to the sublattice of Zd

defined by I. By changing coordinates we convert this sublattice to the standard
one. □

Thus we may use Algorithm 3.3 to list the reducers efficiently. Again we sum-
marize the discussion in an algorithm.

Algorithm 4.18. Given a fractional ideal M , determine the M -reducers.

(1) Determine the trace-minimal cone (Algorithm 4.14).
(2) For each extremal ray vR+ of the trace-minimal cone, choose a represen-

tative v ∈ K and determine the set Rv = {x ∈ M+ : trxv < minM tr v}
as in Lemma 4.17.

(3) The answer is ∪vRv.

5. Algorithms for defects

We now consider two closely related problems concerned with counting elements
with multiples of bounded trace. Thus let M be a lattice in K and V ⊆ O×

K,+ be

a subgroup of finite index preserving M (by Lemma 2.2 such a subgroup exists).
We recall the notation from Definition 2.1 and the fact [16, Satz 2.4] that the qth
defect of a cusp of type (M,V ) is δM,V (q) = #Λq(M)/V . Our problems are as
follows:

Problem 5.1. Given M,V, q, compute δM,V (q).

Problem 5.2. Given M,V , give an asymptotic formula for δM,V (q).

For the first of these problems, most of the ideas of Section 4 are not necessary.
By rescaling we may assume that M ⊆ OK . For simplicity, and because it is the
only case needed in this paper by [2, Proposition 3.3.8], we assume that M is an
ideal of OK .

Lemma 5.3. Let dK be the different ideal of OK . Let t ∈ d−1
K and let x ̸= 0 ∈ M̂ .

Define I1, I2 by (x) = d−1
K M−1I1, (t) = d−1

K I2. Then there exists m ∈ M with
xm = t if and only if I1|I2.

Proof. Of course m ∈ K with xm = t is unique, so we need only determine
whether x−1t ∈ M . Since I1, I2 are integral and (x−1t) = MI2I

−1
1 , the result

follows. □

Lemma 5.4. For all ideals M , all q > 0, and all V of finite index in O×
K,+, we

have δM,V (q)− 1 = [O×
K,+ : V ]

(
δM,O×

K,+
− 1
)
.

Proof. The quotient map (Λq(M)\{0})/V → (Λq(M)\{0})/O×
K,+ is [O×

K,+ :

V ]-to-1. □

Thus we obtain an algorithm to calculate the defects as follows:

Algorithm 5.5. Given M,V where M is an ideal, compute the first q defects
(δM,V (i))

q
i=1.
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(1) List all totally positive elements of d−1
K with trace less than q, using Al-

gorithm 3.3. (We proved in Corollary 4.11 that these are the points of a
lattice inside a rational polytope, so the algorithm is applicable.)

(2) Determine the sets of ideals Ii = {(tdK) : t ∈ d−1
K , tr t < i} for 1 ≤ i ≤ q.

(3) For each I ∈ Iq, determine the set of divisors DI of I, and let DI,+ =
{J ∈ DI : IJ−1M is narrowly principal}. For each i let Di = ∪I∈Ii

DI,+.
(4) The answer is ([O×

K,+ : V ]#Di + 1)qi=1.

Proposition 5.6. Algorithm 5.5 terminates and is correct.

Proof. Termination is immediate, since this algorithm has no loops and all
of the steps are effective. For correctness, first we assume that V = O×

K,+. Let

t ∈ d−1
K,+ with trm < q and let x ∈ M̂+; define I1, I2 as in Lemma 5.3. If tx−1 ∈ M

then, from the above, I1I
−1
2 = t−1xM−1 and I1I

−1
2 M is narrowly principal, being

generated by t−1x. The converse follows similarly. Counting narrowly principal
ideals is the same as counting totally positive generators of those ideals up to
totally positive units, so the result follows. The last step, giving the answer, is
justified by Lemma 5.4. □

Remark 5.7. We give the output in this form because computing the qth defect
is not significantly harder than computing the first q defects.

We now consider the problem of determining an asymptotic.

Definition 5.8. For r ≫ 0 ∈ K, let TM,V,r(q) be the intersection of the V -
trace-minimal cone with the half-space tr rx ≤ q. Let TM,V (q) = ∪r∈R′

M
TM,V,r(q).

Example 5.9. We illustrate this definition for a quadratic and a cubic field.
First let K = Q(

√
14). The trace-minimal cone is bounded by rays through 4±

√
14,

and the reducers are 4 ±
√
14. Thus the set R′

OK
consists of 3 elements, the

corresponding triangles being shown in the first plot of Figure 2. Next we consider
the smallest cubic field that has reducers, namely K = 3.3.148.1, obtained by
adjoining a root α of x3−x2−3x+1. The maximal order is Z[α] and so we specify
an element of K as a triple (a, b, c) representing a + bα + cα2. The trace-minimal
cone is bounded by rays through

(4, 26, 21), (15,−32, 14), (17, 18, 6), (53,−44, 10), (68,−2,−13), (139, 34,−38)

(one verifies that for each x in this list there are at least two totally positive units
ux ̸= 1 with trx = trxux, an obvious necessary condition); we find 7 reducers,
namely

(0, 1, 1), (1,−2, 1), (1, 2, 1), (2,−7, 3), (2,−3, 1), (4, 1,−1), (5, 0,−1).

Thus TOK ,O×
K,+

(1) is a union of 8 polyhedra, shown in the second plot of Figure 2.

The largest polyhedron, containing a factor of 256/275 of the volume of the union,
corresponds to TOK ,O×

K,+,1(1) and is shown in yellow. A Jupyter notebook in [18]

contains an interactive version of this plot.

Lemma 5.10. TM,V (1) is a finite union of rational polytopes and TM,V (q) is
obtained by scaling TM,V (1) by q. □

Lemma 5.11. Let x ∈ M̂+ and suppose that y ∈ M+ is such that trxy < q.
Then there is r ∈ R′

M such that trxr < q.
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Figure 2. Regions describing elements of the quadratic and cubic
fields of discriminant 56 and 148 respectively having an integral
multiple with bounded trace. For the quadratic field we have a
union of 3 triangles T1, T2, T3, corresponding to the reducers 4 −√
14, 4+

√
14 and 1, and shown in the figure in red, blue, and green

respectively. The vertices of T1 are (0, 0), (1,−1/4), (1/15, 1/60),
and those of T3 are (0, 0), (1/2,−1/8), (1/2, 1/8). We obtain T2 by
reflecting T1 in the y-axis. For the cubic field, the region is a union
of 8 polyhedra, each with 7 vertices.

Proof. Suppose that trxy < q. If y ∈ RM we take r = y. If not, then
trx < q/minM and we take r = minM . □

Lemma 5.12. There is a surjective map from the set of M̂ -points of TM,V (q)

to Λq+1(M)/V , taking x ∈ M̂ to xV . If x ∈ M̂ is in the interior of TM,V (q), then
no other element of the set has the same image as x.

Proof. First, this is indeed a map of the given sets: for x ∈ M̂ , being in
TM,V (q) implies that there exists y with trxy ≤ q which is either a reducer or
minM , so xV ⊂ Λq+1(M). For surjectivity, fix xV ∈ Λq+1(M)/V and choose x to
be a trace-minimal element of xV . By definition we have trxy ≤ q for some y ∈ M ,
and by Lemma 5.11 we may take y ∈ R′

M . Thus x ∈ TM,V,y(q) ⊆ TM,V (q).

For the injectivity statement, suppose that x, x′ ∈ M̂ ∩ TM,V (q) have the same
image in Λq(M)/V . Since x−1x′ ∈ V and x, x′ are trace-minimal, we must have
trx = trx′, which means that x, x′ are on the boundary of the trace-minimal cone
and hence of TM,V (q). □

Algorithm 5.13. Given M,V , where M is a fractional ideal of K and V is
a subgroup of finite index in O×

K,+, compute the rational constant cM,V such that

δM,V (q) ∼ cM,V q
d.

(1) Determine the trace-minimal cone by means of Algorithm 4.14.
(2) Determine the reducers RM using Algorithm 4.18.
(3) Let P be the set of polyhedra given by intersecting the trace-minimal cone

with the half-spaces tr rx ≤ minM trx for each element of R′
M . Use

Algorithm 3.6 to determine the volume E of ∪P∈PP .
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(4) Return E[O×
K,+ : V ]/NK/Q(M̂), where NK/Q is the norm map on frac-

tional ideals.

Proposition 5.14. Algorithm 5.13 terminates and is correct.

Proof. As before, termination is immediate from the termination of each step,
since there are no loops. For correctness, by combining Lemmas 5.10, 5.12 we see
that asymptotically the elements of Λq(M)/O×

K,+ are in bijection with the points of

M̂ lying in ∪P∈PP scaled by q. (The failure of injectivity only affects the points on
polytopes of lower dimension, which are asymptotically negligible.) The correctness

of the algorithm follows for V = O×
K,+, since covol M̂/ covolOK = N(M̂). The more

general result follows from Lemma 5.4. The desired asymptotic is then a standard
fact [4, Lemma 3.19], and since δM,V (q) = #Λq(M)/V the result follows. □

Remark 5.15. In this algorithm we could replace the trace-minimal cone by
the V -trace-minimal cone and omit the multiplication by [O×

K,+ : V ] in the last
step.

Corollary 5.16. The constant cM,V depends only on the narrow ideal class
of M , and cM,V = [O×

K,+ : V ]cM,O×
K,+

.

Proof. Let I be narrowly principal and generated by p. There is an obvious
bijection Λq(MI)/V ↔ Λq(M)/V given by multiplication by p. For the second
statement, if we pass to a subgroup of V of index n, the volume of the fundamental
domain is multiplied by n. The result follows. □

Remark 5.17. Although cpM,V = cM,V for p ≫ 0, the time required to deter-
mine it using Algorithm 5.13 seems to grow rapidly with [pM : (min(pM))], and it
is wise to choose p so as to minimize this quantity.

We have now solved Problems 5.1, 5.2.

Remark 5.18. Even in dimension 2, it is not true that cM,V is independent

of M . For example, take K = Q(
√
3) and consider the two ideals (1), (

√
3) that

represent the narrow class group. IfM = (1) we find that δM (q) = 1+q(q−1), while

for M ′ = (
√
3) it turns out that δM ′(q) = 1 + q(q − 1)/2. By [1] or [30, Example

II.5.1] the self-intersections of the curves in the cusp resolutions are respectively
−4 and −3,−2, so this is in accordance with [30, Proposition III.3.6]. (Note that
[30] refers to the obstruction to extending forms that vanish at the cusp across a
resolution, not all forms, so the quantity considered by van der Geer is 1 less than
our defects.) In general it appears that, as I ranges over genus representatives,
the largest cI,O×

K,+
occurs for the principal genus. For examples in dimension 3,

compare Tables 2 and 4.

Remark 5.19. By a standard result on rational polytopes, first proved by
Ehrhart in 1962 but more easily accessible as [4, Theorem 3.23], the δM,V (q) for a
given cusp are polynomial on residue classes. However, computations of the δM,V (q)
indicate that they satisfy a simpler formula than might be expected, especially in
the case M = OK , V = O×

K,+. See Remark 6.10. We therefore suspect that there

is some further structure to the δ(q) that remains to be elucidated.
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6. Results at level 1

In this section we will describe the application of the algorithms presented here
to Hilbert modular threefolds of level 1. To do so we need asymptotic formulas for
both the dimension of the space of modular forms of weight 2k and the defects. For
the first of these, we already have the result in Proposition 1.18. We easily derive
a useful consequence:

Proposition 6.1. Suppose that (−1)d ·2ζK(−1) >
∑

i ci, where the sum ranges
over the cusps of HK and the qth defect of the ith cusp is asymptotic to ciq

d. Then
HK is of general type.

Proof. We substitute the asymptotics for dimM2q and
∑

P δP (q) into (1.1).

The assumptions imply that h0(qK) is not o(qd) and so HK is of general type. □

Thus we will apply Algorithm 5.13 to determine the asymptotic rate of growth
c2k

3 of the kth defect and compare it to −2ζK(−1). In particular, we recall that
if −2ζK(−1) > c2 then HK is of general type (see Remark 1.11). We begin by
reexamining one of the threefolds of arithmetic genus 1 proved by Grundman [11]
to have positive Kodaira dimension.

Example 6.2. Let K = K2,5 be the field obtained by adjoining a root α of
x(x− 2)(x− 5)− 1. As in [11], this field has discriminant 761, the ring of integers
is generated by α, and the unit group is generated by t, t− 2,−1, with the totally
positive units generated by t, (t − 2)2. The class number is 1, so there is only one
cusp up to equivalence, and the narrow class number is 2. We consider the variety
HK corresponding to the principal genus.

The bound bK of Lemma 4.8 can be taken to be 76. Every totally positive
element that is not trace-minimal is reduced by (t−2)itj for some (i, j) ∈ S, where

S ={(−2,−3), (−2,−2), (−2,−1), (−2, 0), (−2, 1), (−2, 2), (0,−2),

(0,−1), (0, 1), (0, 2), (0, 3), (2,−1), (2, 0), (2, 1), (4, 0)}.

There are no reducers for (1), so determining the trace-minimal cone is enough
to calculate the defects. The rays defining this cone are spanned by

(23, 29, 51), (350,−55,−18), (682, 132,−109),

(−35,−375, 154), (84, 139, 87), (1179, 130,−165),

where (a, b, c) abbreviates a+ bα+ cα2.
Cutting the cone by the hyperplane trx = 1, we obtain a polyhedron whose

volume is 13/4. This matches Grundman’s formula [11, Theorem 1], from which
it follows that the qth defect of the cusp defined by the group of totally positive
units is asymptotic to 13q3/4. Thus the defect for the group of squares of units
is asymptotic to 13q3/2. Since −2ζK(−1) = 20/3 > 13/2, Proposition 6.1 implies
that principal component of the Hilbert modular threefold for K is of general type.
On the author’s laptop (a modest computational resource by the standards of the
year 2025), this computation takes only 0.5 seconds.

Remark 6.3. Similar considerations apply to K3,5 = 3.3.985.1, giving the
result that the principal component of HK is of general type. Though Grundman
only states that at least one plurigenus of each of these varieties is positive, we
consider the statement that they are of general type to be implicit in her work.
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Example 6.4. We now consider a more involved example: the cubic field
3.3.473.1. It is generated by a root α of t3 − 5t − 1. Then OK = Z[α], while

O×
K = ⟨−1, α, α + 2⟩ and O×

K,+ = O×
K

2
. We have hK = h+

K = 1. Every non-trace-

minimal element is reduced by αi(α+ 2)j for some (i, j) ∈ S, where

S = {(−4,−2), (−2,−2), (−2, 0), (−2, 2), (0,−2), (0, 2), (2,−2), (2, 0), (2, 2), (4, 0)}.
It turns out that there are 19 reducers, whose norms range from 3 to 15. We find
that 8 of the 20 polyhedra that correspond to the elements of R′

OK
are redundant,

so we need only find the volume of a union of 12 polyhedra. This is small enough
that we can check the result of Algorithm 3.6 by inclusion-exclusion, finding by both
methods that the volume is 79/24DK . On the other hand, we have −2ζK(−1) =
10/3. Since 10/3−79/24 > 0, this proves that HK is of general type. This example
takes under 4 seconds, most of which is used for the volume computation, which
passes through the main loop of Algorithm 3.6 (step (2)) 22 times.

We now survey the fields for which pg(HK) ≤ 1 [12, Table I], beginning with
those for which we cannot prove HK;I to be of general type. (Although we do
not have a real result for these, the information shown here will be useful in Sec-
tion 7.) In the tables in this section, we use the following notation. The columns
labeled h+, r, n, t, t′ refer to the narrow class number, the number of reducers, the
number of passes through the main loop of Algorithm 3.6, the time for the whole
calculation, and the time taken by one particular run of Algorithm 3.6. We omit
the class number because it is always 1 for cubic fields K with pg(HK) ≤ 1 (for
this reason it is also unnecessary to specify the cusp), and we omit h+ in tables
for the nonprincipal genus, since it is always 2 there. The exceptional speed of the
examples of discriminant 49, 81, 169, 229, 257, 361, 697, 761, 985, already considered
by Thomas-Vasquez or Grundman [25, 10, 11], reflects that these are fields with
no reducers and a very simple cusp resolution. The field 3.3.1489.1 is also K1,8.
Likewise, in the genus-1 case, 3.3.1369.1 is the cubic subfield of Q(ζ37), which is K7

(Definition 1.7) and has no reducers. On the other hand, although 3.3.1765.1, for
example, can be defined by the special polynomial p(t) = t(t − 2)(t − 42) − 1, the
maximal order is not generated by a root of p and the unit group is not generated
by t, t− 2, so this does not imply the existence of a particularly simple resolution.

Proposition 6.5. For the first 11 cubic fields as ordered by discriminant, the
zeta values and asymptotic growth of defects coming from the cusp resolution are
as shown in Table 1.

Proof. We simply apply Algorithm 3.6 to compute the growth of defects. □

Theorem 6.6. Let K be a cubic field of discriminant at least 473 and narrow
class number 1 such that the geometric genus of HK is at most 1. Then the principal
component of HK and ĤK is of general type, unless possibly D(K) = 697.

Proof. This is computed by the method of Example 6.4. When h+ = 1, there
is no difference between HK and ĤK . When h+ = 2, the dimension of the space of
cusp forms of weight 2k for PSL2 is asymptotically twice that for PGL+

2 , but the
stabilizer of the cusp for PSL2 is of index 2 in that for PGL+

2 , so the defect is also
asymptotically twice as large. The elliptic points do not contribute by Remark 2.13.
Thus the calculation is the same for the two groups. Tables 2, 3 show the results
of our computations for the 22+ 14 = 36 real cubic fields satisfying the hypotheses
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Table 1. Hilbert modular threefolds for fields of discriminant at
most 469, not shown to be of general type.

K −2ζK(−1) cOK ,O×
K,+

h+ r n t t′

3.3.49.1 2/21 5/12 1 0 0 0.250 0.010
3.3.81.1 2/9 3/4 1 0 0 0.130 0.000
3.3.148.1 2/3 55/36 1 7 8 0.950 0.700
3.3.169.1 2/3 17/12 1 0 0 0.190 0.000
3.3.229.1 4/3 3 2 0 0 0.240 0.000
3.3.257.1 4/3 26/9 2 0 0 0.200 0.000
3.3.316.1 8/3 137/36 1 60 35 7.160 5.500
3.3.321.1 2 8/3 1 17 21 3.050 2.510
3.3.361.1 2 29/12 1 0 0 0.390 0.000
3.3.404.1 10/3 143/36 1 94 55 8.640 6.920
3.3.469.1 4 49/12 1 58 25 6.330 3.990

of the theorem. The general type result follows by noting that the second column,
the constant in the asymptotic for the dimension of the space of modular forms, is
greater than the third, the constant in the asymptotic for the defect. □

Table 2. Hilbert modular threefolds of general type, except for
discriminant 697, and geometric genus 0 (principal genus).

K −2ζK(−1) cOK ,O×
K,+

h+ r n t t′

3.3.473.1 10/3 79/24 1 19 22 3.750 3.020
3.3.564.1 6 1021/180 1 227 84 25.230 20.530
3.3.568.1 20/3 1141/180 1 477 60 28.130 17.700
3.3.621.1 20/3 413/72 1 219 95 34.110 28.080
3.3.697.1∗ 16/3 67/12 2 0 0 0.330 0.010
3.3.733.1 8 221/36 1 251 75 30.510 22.020
3.3.756.1 26/3 469/72 1 297 102 55.440 32.830
3.3.761.1 20/3 13/2 2 0 0 0.510 0.010
3.3.785.1 22/3 29/6 1 71 76 19.080 16.820
3.3.788.1 28/3 113/12 2 50 16 7.850 2.930
3.3.837.1 32/3 1381/180 1 1154 95 75.750 41.770
3.3.892.1 40/3 1091/90 2 141 54 20.220 13.610
3.3.940.1 44/3 703/72 1 1209 194 154.230 117.120
3.3.985.1 28/3 70/9 2 0 0 0.660 0.010
3.3.993.1 34/3 2377/360 1 120 68 35.030 27.330
3.3.1076.1 44/3 719/60 2 28 11 5.590 3.580
3.3.1257.1 16 101/9 2 15 15 5.880 4.540
3.3.1300.1 18 629/72 1 742 94 102.790 59.860
3.3.1345.1 46/3 779/120 1 95 143 55.150 50.250
3.3.1396.1 64/3 535/36 2 45 19 9.950 5.140
3.3.1489.1 16 134/15 2 0 0 0.920 0.000
3.3.1593.1 64/3 253/20 2 7 8 3.100 1.520
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Table 3. Hilbert modular threefolds and geometric genus 1 (prin-
cipal genus), all of general type.

K −2ζK(−1) cOK ,O×
K,+

h+ r n t t′

3.3.1016.1 52/3 124/9 2 842 70 85.090 29.070
3.3.1101.1 52/3 247/24 1 3198 163 278.630 125.560
3.3.1129.1 44/3 109/10 2 41 27 12.080 9.490
3.3.1229.1 56/3 37/3 2 64 43 20.580 17.330
3.3.1369.1 14 65/12 1 0 0 1.300 0.000
3.3.1373.1 68/3 1861/168 1 1351 171 173.030 109.780
3.3.1425.1 58/3 1519/180 1 481 145 97.420 72.400
3.3.1492.1 68/3 667/45 2 28 17 7.980 5.880
3.3.1573.1 76/3 2671/252 1 1088 230 234.060 179.500
3.3.1620.1 86/3 37/3 1 4708 274 623.380 300.940
3.3.1765.1 92/3 658/45 2 908 68 238.690 36.970
3.3.1825.1 68/3 401/36 2 3 4 2.810 1.230
3.3.1929.1 92/3 667/45 2 192 57 84.140 26.730
3.3.1937.1 28 397/30 2 18 26 12.890 10.270

Theorem 6.7. Let K be a cubic field of discriminant greater than 229 and
narrow class number 2 such that the geometric genus of HK is at most 1. Then
the component of HK or ĤK corresponding to the nonprincipal genus is of general
type.

Proof. Again, this is computed as above, with the same argument showing
that only one of HK , ĤK need be considered. See Tables 4, 5. These tables were
computed by choosing the ideal I representing the nonprincipal genus to be of
minimal norm among integral ideals that are not narrowly principal. □

Table 4. Hilbert modular threefolds for the nonprincipal genus
for fields K with h+ = 2 for which pg(HK) = 0, all but the first
shown to be of general type.

K −2ζK(−1) cOK ,O×
K,+

r n t t′

3.3.229.1∗ 4/3 14/9 8 9 1.360 0.850
3.3.257.1 4/3 1 20 16 1.960 1.580
3.3.697.1 16/3 7/6 77 27 5.020 3.900
3.3.761.1 20/3 9/4 37 12 2.590 1.610
3.3.788.1 28/3 32/9 561 61 28.220 18.210
3.3.892.1 40/3 113/18 547 66 34.480 22.740
3.3.985.1 28/3 16/9 109 47 12.220 10.000
3.3.1076.1 44/3 127/30 281 67 25.830 20.500
3.3.1257.1 16 53/12 141 74 23.270 19.960
3.3.1396.1 64/3 40/9 1274 121 82.220 57.000
3.3.1489.1 16 4/3 182 40 17.560 12.700
3.3.1593.1 64/3 311/90 417 104 49.450 37.640
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Table 5. Hilbert modular threefolds for the nonprincipal genus
for fields K with h+ = 2 for which pg(HK) = 1, all of general type.

K −2ζK(−1) cOK ,O×
K,+

r n t t′

3.3.1016.1 52/3 73/9 3414 117 220.450 96.780
3.3.1129.1 44/3 173/36 472 39 33.160 18.250
3.3.1229.1 56/3 313/45 255 97 48.970 40.720
3.3.1492.1 68/3 35/9 850 146 90.950 67.550
3.3.1765.1 92/3 382/45 3649 100 310.810 75.830
3.3.1825.1 68/3 35/18 342 60 52.250 36.420
3.3.1929.1 92/3 53/9 1789 112 190.440 75.420
3.3.1937.1 28 21/4 134 101 73.210 64.580

We now discuss the two cubic fields for which we can prove that κHK
> 0 but

not that HK is of general type, aside from the field of discriminant 697 for which
this is already known [10]. These correspond to the last two rows of Table 1, where
−2ζK(−1) is less than the scaled volume of the union of polyhedra, so we cannot
conclude that HK is of general type.

Proposition 6.8. (1) Let K1 be the cubic field 3.3.404.1 = Q(α), where
α is a root of x3 − x2 − 5x− 1. Then κHK

≥ 0.
(2) Let K2 be the cubic field 3.3.469.1 = Q(α), where α is a root of x3 − x2 −

5x+ 4. Then κHK
> 0.

Proof. In each case we compare the dimension of the space of modular forms
to the defect for small q. For K1 we use [27, Theorem 3.10] to find that dimM4 =
13, while Algorithm 5.5 shows that the defect for forms of weight 4 is 12. Thus
h0(K⊗2) ≥ 1 and κHK1

≥ 0. Similarly, for K2 the dimension and defect are 15 and

12 respectively. Thus h0(K⊗2) ≥ 3 and κHK2
> 0. □

Remark 6.9. For K2, we compute that 0 ≤ k ≤ 7 the dimension of M2k is
1, 1, 15, 64, 172, 365, 668, 1098 respectively. The first two defects are as always 0, 1,
but we compute the next few as 12, 60, 170, 365, 670, 1111, and from then on they are
presumably always greater than the dimension ofM2k, so nothing further is learned.
We see that h0(K⊗3) ≥ 4 and h0(K⊗4) ≥ 2, which would also suffice to prove that
κHK

≥ 1. In contrast, for K1 the dimensions are 1, 1, 13, 53, 144, 304, 557, 915, while
the initial defects are 0, 1, 12, 59, 166, 356, 653, 1082, and only K⊗2 is seen in this
way to have nonzero sections. Of course, if K⊗2 has nonzero sections then so does
K⊗2n for all n ≥ 0.

Remark 6.10. As alluded to in Remark 5.19, it appears that the defect series∑∞
q=0 δ(q)t

q is the rational function

−x6 + 12x5 + 38x4 + 51x3 + 36x2 + 10x+ 1

(1− x)2(1− x2)(1− x3)
.

This could be proved by a calculation like that used to prove [10, Theorem 1], but
with much greater effort because we end up with a union of 9 convex polyhedra
rather than a single one as in [10]. For other cubic fields, we find a similar formula,
given by a polynomial of degree 6 divided by (1 − x)2(1 − x2)(1 − x3). When the
inverse different is replaced by some other fractional ideal containing the inverse
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different, it appears that the denominator changes to (1−x)(1−x)2(1−x3)(1−xd),
where d divides the index.

We have a similar result for the smallest cubic field of narrow class number 2
and the nonprincipal genus.

Proposition 6.11. Let K3 be the cubic field 3.3.229.1 = Q(α), where α is a
root of x3 − 4x− 1, and let A represent the nonprincipal genus. Then κHK;A

≥ 0.

Proof. The argument is essentially identical to the above; we have dimM4 =
6, while the defect for the cusp relative to the full group of totally positive units is 3.
By Lemma 5.4, the defect for the group of totally positive units is 2(3− 1)+1 = 5,
and we have h0(K⊗2) ≥ 1. □

6.1. Fields for which the geometric genus is greater than 1. To close
this section, we describe what would be required to prove that HK;A is of general
type for all K with pg(HK) > 1. We begin by showing that the criterion of [29,
Theorem 1] applies to all genera.

Theorem 6.12. Let K be a totally real field of degree d > 2 with class number
h, regulator R, and discriminant DK . Suppose that K is not Q(ζn)

+ for n ∈
7, 9, 15, 20, and that if d = 4 then 3 is not a square in K. If

2−2d+2π−2ddd
dKζK(2)

hR
> 1

then all components of HK are of general type.

Proof. The statement is the same as that of [29, Theorem 1] except that we
do not restrict to the principal genus and (for simplicity) do not allow the quotient
by a nontrivial subgroup of AutK. The proof is a straightforward adaptation of
Tsuyumine’s to this slightly more general situation.

In our notation Tsuyumine defines θ(I, q) = {ν ∈ ID−1
K : ν ≫ 0, tr(νβ ≤

q) for some β ≫ 0 ∈ I−1 (cf. Definition 2.1), according to which this would be

Λq+1(I
−1)) and u(I, q) = #(θ(I, q)/O×

K

2
). Then [29, Lemma 4] (again in our

notation, and simplifying by ignoring the possibility of a subgroup of Sn acting on

the coordinates) shows that dimS
(m)
2k (Γ) ≥ dimS2k(Γ) −

∑
aλ

u(a2λ,
1
2k + m − 1).

Here aλ runs over a set of ideals corresponding to the cusps and S(m) denotes a
certain space of cusp forms [29, p. 271] such that if S(1) ̸= 0 and K is not one
of the exceptional fields in the statement of the theorem then the Hilbert modular
variety is of general type.

Let g be the number of components of the Hilbert modular variety. Asymp-
totically the dimension of the space of weight-2k cusp forms on each component is
equal by Proposition 1.18, so on each component we obtain

2−2+1 π−2d D
3/2
K ζK(2) (2k)d +O(kd−1)

([29, p. 274]), while the inequality [29, Lemma 5] u(I, q) ≤ (2d−1 d−d D
1/2
K |R|)qd+

O(qd−1) is independent of I. Now apply [29, Lemma 4] with aλ running only over
ideals representing the cusps of one particular component. As in [29, (9)] we find
that for each component

dimS
(m)
2k Γ ≥

(
2−2d+1π−2dD

3/2
K ζK(2)− 2−1d−dD

1/2
K hR

)
kd +O(kd−1),
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whence as in [29, Theorem 1] if 2−2d+2π−2ddd DKζK(2)
hR > 1 then the component is

of general type. In this context Tsuyumine’s ĥ is equal to our h since there is no
action by a nontrivial subgroup of Sn. □

Corollary 6.13. Let K be a totally real cubic field of discriminant greater
than 2.77 · 108 and A an arbitrary genus of K. Then HK;A is of general type.

Proof. In view of Theorem 6.12, the calculation of [9, Theorem 2] applies
equally to all genera. □

Now we would like to determine all K for which [29, p. 276] does not immedi-
ately show this to be the case.

Hypothesis 6.14. For all but 421 totally real cubic fields, the largest of their

discriminants being 26601, the Tsuyumine-Grundman criterion DKζK(2)
hR ≥ 16π6

27
([29, Theorem 1]; [9, Corollary 10]) is satisfied.

In light of Grundman’s observation that this holds for all K with DK > 2.77 ·
108, this could be proved by a finite calculation (though one should note that the
tables of cubic fields in the LMFDB [17] are not complete this far out). If cubic
fields are ordered by discriminant, the field of discriminant 26601 is 1133rd, and
we have checked that there are no further counterexamples among the first 25000
fields.

Let us assume Hypothesis 6.14. Of the 421 fields, there are 47 with pg(HK) ≤ 1,
and these have been studied earlier in this section. Of the remaining 374, there are
25 with class number greater than 1, so we need a lemma to describe the cusps.

Lemma 6.15. Let K be a totally real field and fix a genus A ∈ Cl+(K)/2Cl+(K).
The h(K) cusps of HK;A are of type (I2A,O×

K,+) as I runs over the ideal classes
of OK .

Proof. Immediate from [2, Proposition 3.3.8 (a)]. □

Now we need only apply the existing code to the cusps as described above and
compare their defect contribution to −2ζK(−1) to prove that the Hilbert modular
varieties are of general type. For example, let us consider the first cubic field of
class number 2, which does not satisfy the Tsuyumine-Grundman criterion.

Example 6.16. The field K = 3.3.1957.1 is Q(α), where α is a root of x3 −
x2 − 9x+ 10. We have hK = 2, but the narrow class group is cyclic of order 4, so
there are 2 genera. Let the narrow class group be represented by I0, I1, I2, I3, where
I0, I2 are principal and I0 is narrowly principal. We may choose the representatives
to have norm 1, 2, 4, 4 respectively (this specifies them uniquely). For the principal
genus and PGL+

2 , the two cusps are of type (I0,O×
K,+), (I2,O

×
K,+), and for the

nonprincipal genus, they are of type (I1,O×
K,+), (I3,O

×
K,+). If we used PSL2 instead

of PGL+
2 , the groups of units would be O×

K

2
instead of O×

K,+.

We calculate that −2ζK(−1) = 104/3, and that the volume of the unions of

polyhedra for cusps of type (Ij ,O×
K

2
) scaled by the covolume of Îj are respectively

34/3, 71/18, 44/15, 103/18. Since 104/3 > 34/3+44/15, 71/18+103/18, this shows
that both HK;A are of general type.

Hypothesis 6.17. For all K with pg(HK) > 1 and all genus representatives
A, the Hilbert modular threefold HK;A is of general type.
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Remark 6.18. The analogous statement is false for quadratic fields; in the
honestly elliptic case of [30, Theorem VII.3.3] there are many counterexamples.

In [18] there is a script that is expected to verify that Hypothesis 6.14 implies
Hypothesis 6.17 if run long enough, as well as code that will check that there are
no counterexamples to Hypothesis 6.14 among cubic fields in the LMFDB.

7. Results at higher level

In this section we describe our results on the Kodaira dimension of Hilbert
modular threefolds of the form HK,I;A. As before, we can try to prove that such a
surface is of general type by showing that the dimension of the space of modular
forms grows faster than the defects, and if this fails we can still hope to prove that
κHK,I;A

> 0 by finding q such that dim |qK| ≥ 2. If pg(HK) = 1 then we have
already shown that HK is of general type, so the same follows for its covers and so
the most interesting cases are those with pg(HK) = 0.

We now begin to list the pairsK, I systematically for which the geometric genus
of HK,I is at most 1. First note that if J |I and pg(HK,J) > 0, then by the theory of
oldforms we have pg(HK,I) > 2pg(HK,J) ≥ 2, so such cases can be ignored. We will
use the trace formula [2, (5.1.2)] to bound the levels for which the geometric genus
is at most 1. Let us begin by stating the formula, first introducing the notation of
[2, (5.1.3), (5.2.2)].

Notation 7.1. Let K be a totally real field of degree d and let I be an ideal of
its maximal order. Let S be the set of orders containing one of the OK [x]/(x2−tx+
u) where u ranges over totally positive units modulo squares and t over elements of
OK such that t2−4u ≫ 0. For each order S ∈ S, let cS = h(S)/2[S× : O×

K ] as in [2,
(5.1.3)]. Let A = (−1)d−1h+(OK), let B = 1

2d−1 ·|ζK(−1)|·N(I)
∏

p|I
(
1 +N(p)−1

)
,

let C(u, t) = 1
2

∑
S∈S

h(S)

[S×:O×
K ]
m(Ŝ, ÔK ; Ô×

K), where the m are certain embedding

numbers that are products over primes dividing the level, defined in [31, Section

30.6], and let Dk(u, t) = α(u,t)k+1−β(u,t)k+1

α(u,t)−β(u,t) , where α(u, t), β(u, t) are the roots of

T 2 − tT + u.

Theorem 7.2. [2, (5.1.2)] The dimension of the space of Hilbert cusp forms
for Γ0(I) of weight 2k is the coefficient of T 2k in

AT 2 +BT

(
T

d

dT

)n(
T

1− T 2

)
+ (−1)n

∑
(u,t)

C(u, t)
∑
m≥1

NK/Q(D2m−2(u, t))T
2m.

Remark 7.3. We have corrected a typographical error in [2, (5.1.2)], where
the sign before the term beginning with

∑
(u,t) C(u, t) is omitted.

Theorem 7.4. Let K be a totally real cubic field satisfying pg(HK) = 0 and
let p be a prime ideal of OK . If pg(HK,p) ≤ 1 then either p divides the conductor
of some S ∈ S or h+(OK) + (N(p) + 1) |ζK(−1)| /4− 2

∑
S∈S cS ≤ 1.

Remark 7.5. Of course this implies an effective upper bound for N(p).

Proof. This is a consequence of [2, (5.1.2),(5.1.3)]. Indeed, the geometric
genus is the dimension of the space of weight-2 cusp forms by Theorem 1.22. We es-

timate the constantsA,B,C,D in this case. The coefficient of T 2 in T
(
T d

dT

)n ( T
1−T 2

)
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is always 1, and (N(p)+1) |ζK(−1)| /4 is the value of B in this context (recall that
pg = 0 implies hK = 1 for cubic fields). The coefficient D0 is always 1 so that factor
may be ignored in computing the dimension of the space of weight-2 cusp forms,
while [31, Lemma 30.6.17] implies that the local embedding number m(Ŝ, Ô; Ô×)
is at most 2 when the level is an unramified prime. The result follows. □

We now present the calculation of levels at which the geometric genus is 0 or 1
in detail for the smallest cubic field.

Theorem 7.6. Let K = Q(ζ7)
+
. The Hilbert modular variety HK,I is of geo-

metric genus 0 if and only if I ∈ {(1), p7, (2), p13, p29, p43}, and 1 if and only if
I ∈ {(3), p41, p27, 2p7, (4), p71, p7p13, p97, p113, p127, p213}.

Proof. We apply Theorem 7.4. We have h+(OK) = 1, while ζK(−1) =
−1/21 and

∑
S∈S cs ≤ 1/2(1/2 + 2(1/3) + 6(1/7)) = 85/84, where each term

1/2, 2(1/3), 6(1/7) appears in the sum if and only if p splits in K(i),K(ζ3),K(ζ7)
respectively (we assume that p is not one of the primes p7, (2), (3) dividing one of
the conductors). It follows that if N(p) > 169 then pg(HK,p) > 1, and one checks
cases up to there.

Next we allow the level to be the product of two primes. If the primes are

distinct then the local embedding number is
∏2

i=1 1 +
(

N(pi)
d

)
, and so the contri-

bution cannot exceed 2(85/42). So again if N(p1p2) > 340 we have pg > 1, and it
is not difficult to check up to this point. At level p2 the local embedding numbers
are the same as for p except for primes above 2, 3, 7, and again it is straightforward
to verify that pg > 1 for primes of norm 27 or greater.

Finally, if the level is a product of three or more primes, then pg can be less
than 2 only if pg = 0 for all proper divisors. However, it has already been verified
that if pg = 0 then I is prime, so this is not possible. □

We now study the Kodaira dimension of these covers.

Definition 7.7. Let p be a prime of OK , where K is a totally real cubic field.
If K = Q(ζ7)

+
, then define cp to be 2, 1, 0 according as N(p) ≡ 1, 0,−1 mod 7. If

K = Q(ζ9)
+
, then let cp = 2, 1, 0 according as N(p) ≡ 1, 0,−1 mod 3. For a general

ideal I of Q(ζ7)
+
or Q(ζ9)

+
, let eI = 0 if I is divisible by the square of the ramified

prime and otherwise
∏

p|I cp

cK
, where cK = 84 for Q(ζ7)

+
and 18 for Q(ζ9)

+
. For all

other fields define cp = eI = 0.

Theorem 7.8. Let K be a totally real cubic field with h(K) = 1, let z =
−2ζK(−1), let A be a genus representative for K, and let v be the volume of the
cusp for A as computed in Algorithm 3.6. Let p be a prime ideal of OK such that
(N(p) + 1)z > 2v + ep. Then HK,p;A is of general type.

Proof. Just as with the modular curve X0(p), the Hilbert modular variety
HK,p;A has two cusp orbits when p is prime, corresponding to ∞, 0. The stabilizers
are respectively the groups of upper and lower triangular matrices contained in
Γ0(p;A); in particular, if we conjugate in GL2(K) to an upper triangular subgroup
of SL2, the group of units in the stabilizer is the full group of squares of units.
Since the class number is 1, it follows that the defects of both cusps are equal to
the defects of the cusp for HK;A. In view of Example 2.12, the leading coefficient in
the asymptotic to the contribution of elliptic points to the defect of HK,p is given
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by ep, since the number of quotient singularities is multiplied by 1+
(

p
K(α)

)
, where

K(α) is the quadratic field corresponding to the elliptic point. On the other hand,
the index of Γ0(p) in SL2(OK) is N(p) + 1, and the asymptotic dimension of the
space of modular forms of weight k is multiplied by this factor. □

Remark 7.9. The classification of cusps given here is a special case of the
results of [2, Sections 3.1–3.3].

Notation 7.10. We use pn to denote a prime of norm n. If q is a rational
prime that factors as P1P

2
2 in OK , we denote P1,P2 by pq, rq respectively.

It happens not to be necessary to distinguish the factors of primes that split
completely. In the case of a Galois extension it is understood that the Galois
images of all ideals mentioned have the same property. In view of Theorem A.1 in
the Appendix it is unnecessary to distinguish between different genera, and so the
rows referring to 3.3.229.1, 3.3.257.1 describe both genera.

Table 6. Fields and primes for which pg(HK,p) ≤ 1.

K p : pg = 0 p : pg = 1
3.3.49.1 p7, (2), p13, p29, p43 (3), p41, p71, p97, p113, p127
3.3.81.1 p3, p19, p37 (2), p17, p73
3.3.148.1 p2, p5, p13 p17, p25
3.3.169.1 p5, p13 (2)
3.3.229.1 p2, p4, p7
3.3.257.1 p3, p5, p7
3.3.316.1 r2 p2
3.3.321.1 r3 p3, p7
3.3.361.1 p7
3.3.404.1 p2
3.3.469.1 p4
3.3.568.1 r2

Proposition 7.11. Table 6 gives the pairs consisting of a field and a prime p
for which pg(HK,p) ≤ 1.

Proof. See [18]. Our implementation is not very efficient, but it is fast for all
but the two smallest real cubic fields, so we did not feel a need to improve it. □

Proposition 7.12. The Hilbert modular varieties HK,p for the primes in Ta-
ble 6 are of general type, except possibly as shown in Table 7.

Proof. Use [18] to check the condition of Theorem 7.8. □

Proposition 7.13. Table 8 gives the pairs consisting of a field and a nonprime
ideal I for which pg(HK,I;A) ≤ 1.

Proof. (Sketch.) Such an ideal can only be divisible by primes listed in Table 6
and all of its divisors other than (1) must be in one of the two tables. We verify
using our implementation of [2, (5.1.2),(5.1.3)] that if I is in Table 8 and p is in
Table 6 but Ip is not in Table 8 then pg(HK,I) > 1. As in Corollary 7.11, it is
unnecessary to distinguish between different genera here. Again, see [18]. □
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Table 7. Fields, genera, and primes for which we cannot show
that HK,p,I is of general type. The g column is + for the narrowly
principal genus when h+ = 2; otherwise it is left blank. There are
no examples with the nonprincipal genus.

K g p
3.3.49.1 p7, (2)
3.3.81.1 p3
3.3.148.1 p2
3.3.229.1 + p2
3.3.257.1 + p3

Table 8. Fields and nonprime ideals which pg(HK,I) ≤ 1.

K I : pg = 0 I : pg = 1
3.3.49.1 p27, 2p7, (4), p7p13, p13p

′
13

3.3.81.1 p23 (3), p3p19
3.3.148.1 p22, p2p5 (2), p22p5
3.3.169.1 p5p

′
5

3.3.229.1 p22, p
3
2

3.3.316.1 r22 r32
3.3.321.1 r23

Proposition 7.14. Let K be a cubic field for which pg(HK) ≤ 1. For all
proper nonprime ideals I ⊂ OK and genus representatives A, the corresponding
Hilbert modular variety is of general type, except possibly for p23 in Q(ζ9)

+
, p22 in

the field of discriminant 148, and p22 for the field of discriminant 229 (principal
genus).

Proof. If I has a prime divisor p for which HK,p is of general type, then
HK,I too is of general type, so we need only consider powers of the ideals from

Proposition 7.12 and 2p7 in Q(ζ7)
+
. We start with I = p27 for Q(ζ7)

+
. The index

of Γ0(I) is N(p7)
2 + N(p7) = 56, just as for the index of Γ0(p

2) in SL2(Z). It
is easily seen that the ray class group mod p7∞1∞2∞3 is of order 2, and by [2,
Corollary 3.1.18] this implies that there are 4 cusps. These are represented by
∞, 0, 1/π7, 3/π7, where (π7) = p7. For the first two of these the group of units
is the full group of totally positive units as before, but for the other two it is
the subgroup of totally positive units congruent to 1 mod p7 and the defects are
multiplied by the index of this subgroup, which is 3. Thus the dimension of the
space of modular forms of weight 2n is asymptotically 56 times that for level 1,
which makes it 16n3/3, while the defects are asymptotic to (8 · 5/12)n3, which is
smaller. There are no elliptic points of order 7. Similarly, taking I = (2)2 for

Q(ζ7)
+
, the index is 72, the ray class group mod 2∞1∞2∞3 is trivial, and so there

are 3 cusps, represented by ∞, 0, 1/2. Again, the groups of units for the first two

are O×
K

2
, but for the last we get the totally positive units congruent to 1 mod 2,

a subgroup of index 7. In this case we have 8 elliptic points of order 7, of which
6 contribute to the defect. So the dimension is asymptotically 2 · 72n3/21, while
the defect is asymptotically (9 · 5/12 + 6/252)n3 and we have general type. We

16 Jun 2025 18:56:39 PDT
250123-Logan Version 3 - Submitted to LuCaNT

https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/NumberField/3.3.148.1
https://www.lmfdb.org/NumberField/3.3.229.1
https://www.lmfdb.org/NumberField/3.3.257.1
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/NumberField/3.3.148.1
https://www.lmfdb.org/NumberField/3.3.169.1
https://www.lmfdb.org/NumberField/3.3.229.1
https://www.lmfdb.org/NumberField/3.3.316.1
https://www.lmfdb.org/NumberField/3.3.321.1
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/3.3.49.1


30 ADAM LOGAN

leave it to the reader to check that HQ(ζ7)
+,2π7

is of general type, the dimension of

the space of cusp forms of weight 2n being asymptotic to 48n3/7 and the defect to
71n3/42. (The gap is much larger in this case because there are only 4 cusps, each
stabilized by the full group of units.)

For (3) in Q(ζ9)
+
, the index is 36 and there are 6 cusps. The stabilizers

of these have index 27, 3, 3, 1, 1, 1 in the SL2-stabilizer, and the unit indices are
respectively 1, 3, 3, 1, 1, 1 (the 3 arises as in [1, Proposition 3.3.8 (a)] because the
totally positive units congruent to 1 mod p2 are of index 3). Since ζQ(ζ9)

+(−1) =

−1/9, the dimension of the space of forms is asymptotic to (36 · 2/9)n3, while
the defect is 10 times that for level 1 since there are no elliptic points of order 9.
We compute that the defect for the cusp at level 1 is asymptotic to 3n3/4. Since
36 · 2/9 > 10 · 3/4, the result follows.

The arguments for π3
2 in 3.3.148.1, 3.3.229.1 are similar and we will only sketch

them; likewise for π2
3 in 3.3.257.1. The index of π3

2 in both cases is 12 and there are
4 cusps. For 3.3.148.1, all totally positive units are 1 mod π2

2 and so the unit indices
are 1, 2, 1, 1; thus the cusps create a defect asymptotic to 5 · 55/36n3. On the other
hand, the dimension of the space of modular forms grows like 12(−2ζK(−1))n3 =
8n3, which is larger.

In 3.3.229.1, not all totally positive units are 1 mod p22 and the unit indices are
all 1, so the dimension grows like 12(4/3)n3 and the defect like 4(3)n3. Again, in
3.3.257.1, the index of Γ0(p

2
3) is 12, not all totally positive units are 1 mod p3, and

there are 3 cusps with unit indices 1, 2, 1. So the dimension of the space of modular
forms and the defect grow like 12(4/3)n3 and 4(26/9)n3 respectively. □

Remark 7.15. The argument does not apply to p23 in Q(ζ9)
+
. The index is

12 and the ray class group has order 2, so again there are 4 cusps. Again the
intermediate cusps 1/π3, 2/π3 are stabilized by totally positive units congruent to
1 mod p3, but this time that is all of them, so the defects are the same for all cusps.
The dimension of the space of modular forms of weight 2n is 12 times that for
level 1, so 8n3/3, while the defect is 4 times that for level 1 and is asymptotic to
3n3. Similarly for p22 in 3.3.148.1; the dimension of the space of modular forms is
asymptotic to 4n3 and the defect sum to 55n3/12. Again, for p22 in 3.3.229.1, the
asymptotics are 8n3 and 9n3 respectively, and we do not have a general type result.

Remark 7.16. For reasons discussed at the end of Section 6, we certainly
expect that the hypothesis that pg(HK) < 1 is unnecessary.

Proposition 7.17. In Table 9, the varieties HK,I have at least the indicated
Kodaira dimension.

Proof. Table 9 also gives an n such that the dimension of the space of Hilbert
cusp forms of level I and weight n is equal to resp. greater than the sum of the
defects for κ = 0, 1 respectively. See [18] for details. □

8. Future work

It is also natural to ask about the opposite direction: namely, can it be proved
that some of the Hilbert modular varieties for small fields and levels are not of
general type? Unfortunately the classical methods of Hirzebruch, van de Ven, and
Zagier [30, Chapter VII] do not apply in dimension greater than 2 because of the
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Table 9. Fields and levels for which the Hilbert modular variety
can be shown to be of nonnegative Kodaira dimension, but not of
general type.

K I type κ n dimMn

∑
i δi(n)

3.3.49.1 (2) 1 4 6 4
3.3.81.1 p23 0 4 13 12
3.3.148.1 p22 1 4 18 15

3.3.229.1 p22 GL+
2 1 4 33 27

3.3.229.1 p22 SL2 1 4 30 27

3.3.257.1 p3 GL+
2 1 4 22 18

3.3.257.1 p3 SL2 1 4 20 18

unavailability of Hirzebruch-Zagier cycles and lack of uniqueness of minimal models.
To the author’s knowledge there is only one such result.

Theorem 8.1. [Elkies-Harris, unpublished] Let K = Q(ζ7)
+

or Q(ζ9)
+
. Then

HK is unirational.

The proof relates HK to a moduli space of curves of genus 2 with a point
of order 7 or 9 on the Jacobian and uses an explicit construction to prove that
this moduli space is rational. This approach cannot be applied to any nonabelian
extension.

One might expect that there is no particular reason for the subspaces M2q

and S2q,UC
not to be in general position inside M2q,UC

. If so, then the Kodaira
dimension would be −∞ in all cases where the qth defect is greater than or equal to
the dimension of the space of modular forms of weight 2q. However, this expectation
is violated for certain Hilbert modular surfaces, so we do not believe that it will
hold for threefolds either. We give an example.

Example 8.2. Let K = Q(
√
53). There are no reducers and h+

K = 1. The
dimension of the space of cusp forms of weight 2k is 7k2/3+O(n), since ζK(−1) =
7/6. On the other hand, the area of the polygon TV (1) is 7/2, so the kth de-
fect is asymptotic to 7k2/2 (this can be verified from [30, Proposition III.3.6] as
well; by [30, Example II.5.1] or [1] the cusp components have self-intersection
−9,−2,−2,−2,−2,−2,−2). The 5 elliptic points of type (3; 1, 1) each contribute
k2/6 to the defect. From [30, Theorem VII.3.3] the Hilbert modular surface is of
Kodaira dimension 1, meaning that the nth plurigenus is asymptotically linear in n.
Thus the defect conditions fail strikingly to be independent. Similar examples could
be given for surfaces of general type; with K = Q(

√
89), for example, the Hilbert

modular surface is of general type and 2ζK(−1) = 26/3 while the cusp defect and
sum of the elliptic defects are asymptotically 21n2/2 and n2/6 respectively.

It therefore seems fruitful to examine the q-expansions of Hilbert modular forms
for cubic fields of small discriminant not covered by Theorem 6.6 in order to obtain
lower bounds on the Kodaira dimension of HK . Such q-expansions can be com-
puted, though at present this cannot be done quickly. In future work with Assaf,
Costa, and Schiavone we will describe techniques to compute the q-expansions and
their implications for the Kodaira dimension of Hilbert modular threefolds for cubic
fields of small discriminant.
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Appendix A. Dimensions of spaces of Hilbert modular forms over
fields of odd degree (by Adam Logan and John Voight)

In this appendix, we show that for fields of odd degree, the dimension of the
space of Hilbert modular forms supported on a connected component is equal across
all components.

As we will be adapting results from [2], we compare the notation from that
paper to ours. In [2], the totally real field, its maximal order, and its degree are
F,R, n rather than K,OK , d, and the congruence subgroups that we have denoted
Γ0(I;A), Γ̂0(I;A) are written as Γb = Γ0(N)b,Γ

1
0(N)b, where b runs over the rep-

resentatives of the narrow class group indexing the connected components of the
associated Hilbert modular variety.

Theorem A.1. Suppose that d = [F : Q] is odd. Then for all k = (ki)
d
i=1 ∈

2Z≥0, the dimensions

dimSk(Γ(I;A)), dimSk(Γ̂(I;A))

are independent of A.

Proof. For the main part of the argument, we use a dimension formula due to
Shimizu [22, Theorem 11] which first requires us to suppose that ki > 2 for some i.
For reasons of space, we do not repeat the formula here, but we claim that it depends
only on the rotation factors of the elliptic points for Γ0(I;A) or Γ̂0(I;A). Indeed,
the leading term (a volume) depends only on the index [PSL2(OK) : PΓ0(I;A)] or

[PSL2(OK) : P Γ̂0(I;A)], the field K and the weight k, and the final term (cuspidal
contribution) is zero as pointed out by Shimizu [22, (39)] using that d is odd. The
key term is the middle term (elliptic points contribution): in Shimizu’s notation

s∑
i=1

1

[Γzi : 1]

∑
γ∈Γzi

,γ ̸=1

n∏
i=1

α(i)ri

1− α(i)

where zi are a complete set of inequivalent elliptic points with stabilizers Γzi , the
α(i) are the rotation factors as in [2, §4.3], and ri = ki/2. The number of elliptic
points of each order is the same for the different genera by [2, Proposition 4.2.3],
which gives a formula independent of A. Thus it suffices to prove that the rotation
factors are the same, following [2, §4].

For points of order q = 2, there is nothing to prove, so suppose q > 2. From [2,
Lemma 4.1.1], elliptic points of order q > 2 arise from an extension L = K(ζ2q) ⊃ K
of degree 2. Thus K ⊇ K+ = Q(ζ2q)

+ and [K+ : Q] = ϕ(2q)/2 divides d = [K : Q],
which is odd. So q = pr where p is odd (and in fact, p ≡ 3 (mod 4)). Again since
n is odd, there is a prime p of R above p with odd ramification index. But p is
totally ramified in Q(ζ2pr ) with even ramification index, so p must ramify in K.

Thus the oriented optimal selectivity condition [2, §4.3, (OOS)] fails. By [2,
Definition 4.3.8, Theorem 4.3.11 (a)], all stabilizer orders S = R[γi] are orientedly
genial. In particular, the sets of rotation factors are the same across components
(see the discussion following [2, Definition 4.3.8]) and by [2, Theorem 4.3.11 (c)]
the multiplicities are the same as well.

We now treat the remaining cases. If ki = 0 for some i, then either k =
0 and dimSk(Γ0(I;A)) = 1 (constant functions) independent of A; otherwise
dimSk(Γ0(I;A)) = 0 by van der Geer [30, Lemma I.6.3]. Finally, we consider
the case where ki = 2 for all i, the most important one for us. We just showed that
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the polynomials P such that P (k) is the dimension of the space of forms of even
parallel weight k for k > 2 (see [7, §1]) are the same for all genera. The result then
follows from [7, Satz 7.2] and the comments after it. □
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