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Abstract. A database of abstract groups has been added to the L-functions and Modular Forms Database
(LMFDB), available at https://www.lmfdb.org/Groups/Abstract/. We discuss the functionality of the
database and what makes it distinct from other available databases of abstract groups. We describe solutions
to mathematical problems we encountered while creating the database, as well as connections between the
abstract groups database and other collections of objects in the LMFDB.

1. Introduction

Finite groups have played a profound role in mathematics for close to two centuries and, almost since
their inception, mathematicians have asked classification questions about them. The quest to classify finite
simple groups took up most of the 20th century. In the last 30 years, as computational power became
prominent, various databases of groups have been developed. The ATLAS of Finite Groups which contains
information on interesting groups, notably character tables, began as a book [CCN+85] and is now available
online [WWT+]. The computer algebra programs GAP [GAP21, BEO02] and Magma [BCP97] both have
complete databases of groups of order up to 2000 (except for order 1024, for which there are almost 49.5

billion distinct isomorphism classes). These computer algebra programs also include other databases, such as
almost simple and perfect groups (up to orders 1.6 · 107 and 2 · 106, respectively) and transitive groups up
to degree 48 [Hul], [BCH+]. The GroupNames project [Dok] includes groups up to order 500 (skipping
orders 256 and 384), as well as additional information such as lattice of subgroups and character tables for
the groups.

We have created an online database of over 540,000 finite groups, 275 million of their subgroups, and
almost 40 million irreducible complex characters. The database can be found at: https://www.lmfdb.org/
Groups/Abstract/.

1.1. Highlights of the database. As we note above, there are several other databases of groups
already available, so why do we need yet another one? Some of the useful features of our database are the
following.

• The database is dynamically searchable. We have precomputed and stored many invariants and
properties of the groups in the collection, and created a search interface which allows users to search
on these stored values. For instance, we can quickly determine the 8 groups G of order 1440 which
satisfy the short exact sequence

1→ D10 → G→ F9 → 1,
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with Dn the dihedral group of order 2n and Fq the group of linear affine transformations of the finite
field Fq; we can immediately determine that the smallest group to have an irreducible character of
degree 7 is a group of order 56; in a matter of seconds we can find all 129,069 subgroups of groups of
order between 1 and 255 which are non-normal, non-abelian, non-maximal, and non-trivial proper.
The list of all such subgroups (a 23 megabyte file) can be downloaded in a few seconds. Each of
these searches would be time-consuming and computationally intensive in computer algebra systems
like Magma or GAP.

• The database is free and easy to use. Use of our database requires no prior knowledge of any
programming language or computer algebra package, making it accessible to a broad audience, from
students learning the basics of group theory to experts using groups in their research. While most
of our computations were done in Magma, which is closed-source and requires purchase of a license,
the data we have computed is now publicly available on the internet through the L-functions and
Modular Forms Database (LMFDB).
• The database fosters connections between other collections of objects in the LMFDB. The LMFDB

is a huge international collaboration to collect, curate, and connect computational mathematical
work in number theory, particularly as it relates to the Langlands program. Groups are attached
to many mathematical objects throughout the LMFDB, from Sato-Tate groups to automorphism
groups of curves, and our database of groups facilitates more connections between these various
collections. See Figure 3 for a diagram illustrating some of these connections.

• The database aggregates groups drawn from a variety of sources. The database is flexible in that
it can accommodate groups of various types, such as polycyclic, permutation, and matrix groups,
drawn from multiple sources. See Section 2 for a list of sources used to compute the data.

• The database supports searches on subgroups. For each group in the database, we have computed
and stored information on its subgroups. Users can search for all groups containing a subgroup with
a given property; for instance, one can easily find the 12 groups of order 96 that contain a normal
subgroup isomorphic to A4; see Section 3.3 for more details on the subgroup information stored.

1.2. Structure of the paper. We begin in Section 2 with information about sources for the groups
currently included in the database, and how the data about them is generated. In Section 3 we describe the
web interface and demonstrate a number of features of the database. In the process of designing the database
and computing the corresponding data, we encountered a series of challenges which required mathematical
solutions. The next two sections discuss these challenges: Section 4 describes the method by which we
computed presentations for solvable groups and Section 5 details the procedures we used to deterministically
label subgroups, conjugacy classes, and characters. In Section 6 we give examples of connections between the
abstract groups database and other collections of objects in the LMFDB.

1.3. Acknowledgments. We owe a large debt of gratitude to Tim Dokchitser, whose GroupNames
website was the initial inspiration for our database and who generously shared code and database expertise
with us (as well as giving us permission to re-post many of the definitions on his page as knowls1 on the
LMFDB). We are also appreciative of the advice and many helpful suggestions of Andrew Sutherland. We are
grateful for various conversations and code from Michael Bush, Derek Holt, Alexander Hulpke, Bjorn Poonen,
and David Roberts. We thank the American Institute of Mathematics for hosting a mini-workshop where
much of the initial planning happened, and the Institute for Computational and Experimental Research in

1A knowl is a feature of the LMFDB, where definitions and results are stored within webpages and can be revealed by
clicking. The term was coined to reflect that each knowl contains a little bit of knowlege.
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Mathematics for a workshop where the project took off. We are grateful to the referees for their comments,
which have improved the paper.

Roe and Schiavone were supported by the Simons Collaboration in Arithmetic Geometry, Number Theory,
and Computation via Simons Foundation grant 550033. Paulhus was partially supported by a Frank and
Roberta Furbush Scholarship from Grinnell College. Combes was supported by the Engineering and Physical
Sciences Research Council grant EP/R513313/1.

2. Data overview

2.1. Sources of data. The database currently contains roughly 540,000 groups, 275 million subgroups
and 40 million of their irreducible complex characters.

The code used to generate the data is written in Magma [BCP97] and Python [VRD09], and it can be
found in the GitHub repository https://github.com/roed314/FiniteGroups. The database, as with the
rest of the LMFDB, uses PostgreSQL as its database management system. Computations were carried out
via a combination of an AMD Epyc 7713 server with 256 2.0GHz cores and 2TB of RAM, and a distributed
computation on Google Compute Engine, with a substantial use of GNU parallel [Tan11] in both cases.

Source Total Solvable Perm. Matrix OptimizedPC MinPerm
Small Groups 257936 257500 257746 68042 257500 257746

Transitive Groups 235919 211279 235919 218 14499 161656
Intransitive Groups 5444 2739 5444 16 2330 5378
Classical Lie Type 2201 2 1509 2201 0 1509

CARAT 189 185 186 189 174 186
GLn(Fq) Subgroups 3018 2456 3000 3018 2397 3000

GL2(Z/N) Subgroups 29771 28819 25319 29771 24323 25254
Perfect 123 0 123 1 0 123

Chevalley 13 0 7 13 0 7
Sporadic 9 0 9 7 0 9

Small Group Auto. 283 283 283 0 73 111
Transitive Group Auto. 498 438 498 0 51 201
Auto. Groups of Curves 530 527 530 0 526 530

Table 1. Number of groups by source. See Section 2 for more information.

We compute and store data on groups from various sources. Counts of groups currently in the database
from these different sources are given in Table 1. The “Total” column represents the total number of groups
in the database from that source, excluding those already shown on a previous line. The “Solvable”, “Perm.”,
and “Matrix” columns give the number of groups from each source that are solvable, the number for which we
store a permutation representation, and the number for which we store a matrix representation (over Z, Fp,
Fq, or Z/N), respectively. The “OptimizedPC” column counts how many groups from a given source include
an optimized polycyclic presentation (see Section 4), and “MinPerm” gives the number of groups for which
we store a minimal degree permutation representation.

Approximately half of the data originates from the Small Groups library in Magma [BE99a, BE99b,
BEO01, O’B90, BE01, O’B91, NOVL04, OVL05, DE05, DE12, DEP22]. All groups of order up to
2000 are included, except those whose order is larger than 500 and divisible by 128. In the rest of the paper,
these are the groups we will call “small groups”. Most of the remaining groups come from the transitive
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groups database [Hul05, CH08, HR20], from which we include all groups of degree up to 47, except those
of degree 32, with orders between 512 and 40 billion. Note that our notion of equivalence in this database
is abstract isomorphism rather than conjugacy within Sn; the work to divide the transitive groups into
isomorphism classes is briefly described in Section 2.5. In addition to the databases of small groups and
transitive groups, we use the following sources:

• classical Lie groups up to particular bounds, and Chevalley groups that don’t already show up as
classical Lie groups [Tay87, RT98, HRT01];

• additional intransitive groups which are subgroups of S15 not currently in the database, computed
using the Magma Subgroup command;

• all integer matrix groups of dimension up to 6 from CARAT [OPS08];
• subgroups of GLn(Fq) computed via Magma for n = 2 (q < 1000), n = 3 (q < 16), n = 4 (q < 7)

and n = 5 (q = 2);
• subgroups of GL2(Z/NZ) for N up to 125 (skipping 80, 96, 104, 112 and 120);
• all perfect groups of order up to 50,000 from the corresponding database in Magma;
• the sporadic groups J1, J2, HS, J3, McL, He, Ru, Co3, and Co2 with permutation and matrix

representations taken from the Atlas of Sporadic Groups [WWT+];
• automorphism groups of curves up to genus 48 [Bre00], and “large” automorphism groups (of order
> 4(g − 1)) of curves up to genus 101 [Con10].

Since the automorphism groups of small groups can be much larger than the groups themselves, we also
include all automorphism groups of groups of order up to 255 and of transitive groups of degree up to 23.

2.2. Basic attributes computed for every group. For each group, we compute as many attributes
as possible. Some use commands directly from Magma, such as determining if a group is abelian, while
others require special functions we wrote (for example, determining if a group is metacyclic). We compute a
“reasonable” presentation for the group (see Section 4) and a minimal degree permutation representation.
We usually compute the lattice of subgroups up to automorphisms of the group, and up to conjugacy when
possible (Sections 2.4 and 3.3), and conjugacy classes and character tables when feasible. We also determine
special subgroups such as the center, commutator, Frattini, and Fitting subgroups, as well as various series
for the group.

2.3. Challenging attributes computed for many groups. Many of our quantities of interest become
more difficult to compute as the size or degree of the group increases. Our general approach is to try to
compute everything for all groups, setting appropriate timeouts and omitting data if the computation does
not finish or if we encounter errors in Magma. We have developed additional code for some problems where
Magma’s built-in methods were insufficient for our purposes; notable examples include computing quotients
of permutation groups and isomorphism testing (discussed in Section 2.5).

2.4. Computing subgroup lattices. The subgroup lattice is an example of a particularly challenging
attribute to compute. For each group, we attempt to compute the full lattice of subgroups, but there are
many groups in our database where it is infeasible to compute subgroups up to conjugacy. For example, C10

2

has 229,755,605 subgroups, none of which are conjugate. However, it only has 11 classes of subgroups up to
automorphism. We implemented the computation of the subgroup lattice up to automorphism and improved
on Magma’s built-in subgroup lattice methods up to conjugacy. In some cases, such as S47, even working
up to automorphism does not sufficiently reduce the quantity of subgroups, so we restrict our attention to
normal subgroups and their complements, maximal subgroups, Sylow subgroups, and subgroups with small
index and/or trivial core due to their importance in permutation representations.
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Magma has built-in methods for computing both the subgroup lattice and the list of subgroups up to
conjugacy (without inclusions). We found that the second was much faster than the first, and that we could
recover the inclusions more quickly by computing a vector counting the intersections with each conjugacy
class: if we have a group G and subgroups H1 ⊆ H2, then the vector of counts for H2 dominates that for H1,
dramatically decreasing the number of calls to IsConjugateSubgroup. As noted above, when there are many
subgroups up to conjugacy (e.g. abelian p-groups), we instead compute subgroups up to automorphism. The
first algorithm for doing so uses the holomorph of G, i.e., the semidirect product G⋊Aut(G). Conjugacy
within the holomorph translates to automorphism in the group itself, and a code snippet kindly provided by
Derek Holt, using lifting through an elementary abelian series, allowed for the computation of representatives
of subgroups up to automorphism in the solvable case without computing the list up to conjugacy.

However, the holomorph is implemented in Magma as a permutation group of degree equal to the order
of G, and as the size of G increases, computations using the holomorph get bogged down. For non-solvable
G and G with order at least 5000, we switch to a graph theoretic algorithm. First we compute a list of
subgroups up to conjugacy, together with a list of automorphisms that generate the outer automorphism
group of G. Taking subgroups up to conjugacy as vertices, we add an edge between H1 and H2 if there is an
outer generator σ with σ(H1) conjugate to H2. The components of the resulting graph give the subgroups up
to automorphism,.

2.5. The isomorphism problem. When adding transitive permutation groups to our abstract groups
database, we had to ensure that groups with multiple transitive permutation representations were only added
once each. For small groups, Magma will compute its small group identification number. In a larger range,
the LMFDB’s transitive group section already had the needed information. However, there were multiple
cases where neither approach sufficed.

Running isomorphism tests can be time consuming, so we used the following strategy. We took multiple
isomorphism invariants of a group which are quick to compute and combined them into a hash. This could be
precomputed for large numbers of groups. Groups with different hashes were clearly non-isomorphic. If groups
produced identical hashes, we then had Magma perform a slower, but conclusive test for isomorphism. Our
hash was highly effective in distinguishing non-isomorphic groups. Full details will be given in a forthcoming
article by Roe [Roe].

3. Features of the database

The database is viewable through the LMFDB website at https://www.lmfdb.org/Groups/Abstract/.
In this section we describe how to navigate the web interface, and highlight some particular features.

3.1. Features of the search interface. Groups can be searched through numerous query types, for
example: the isomorphism class of agroup’s automorphism group, commutator, center, abelianization, Frattini
subgroup, etc.; the order of any of these and the group itself; many boolean properties such as nilpotency,
simplicity, and solubility. With the search interface, it is easy to quickly answer questions such as “What are
the nilpotent groups of order 36?” and “Are there any groups of order 256 with abelianization C2 × C2?” In
this way, the database provides a useful service to researchers looking for groups with particular properties,
as well as students coming to grips with the basics of group theory. It is also possible to search for groups
whose orders factor in a particular way. For example, groups whose order is of the form p3q2r for primes
p, q, r can be queried with the string [3,2,1].

Groups are assigned a unique label in the database (see Section 5 for more details). These labels can
be used for searching for specific groups, and match those in the GAP Small Groups database when the
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ranges overlap. If the label is not known beforehand, several options exist for searching for a specific group.
Many families of groups can be found using strings. For example, GL(n,q) gives the page for GLn(Fq),
and the strings D10 and F5 give the two groups in the example from Section 1.1—a full list of supported
“transliterations” can be found alongside the database in the group.families knowl. Groups defined in
Magma can also be searched for using the output from the GroupName function.

There is also a curated list of some interesting groups that one can quickly access, and one can also view
the page of a group picked randomly from the database.

3.2. Features of a group page. On individual group pages, information is organized roughly by
topic. Constructions of the group via a presentation (see Section 4), and as direct, semidirect, and non-split
products are given when possible, as well as representations as a matrix or permutation group. Homological
information like the Schur multiplier and commutator length is provided. Special subgroups like the center,
commutator, and socle are displayed. For many groups, we provide several subgroup diagrams; one can toggle
whether subgroups are shown up to conjugacy or up to automorphism (see Section 3.3), and independently
whether to show all such classes of subgroups or just normal subgroups. We also display the derived series,
the chief series, and the upper and lower central series of the group. Groups for which the given group is a
maximal subgroup or a maximal quotient are listed under the Supergroups section.

Groups are also represented pictorially, in line with other sections of the LMFDB. Each disc in a group
picture represents a conjugacy class of elements, arranged in an annulus around the middle class (of the
identity), with distance according to the number of prime factors in the class’ order. The size of a disc is
proportional to the size of the conjugacy class, and the color is chosen based on its order. Decisions on how to
display a group in picture form are essentially a matter of taste; our conventions lead to some group pictures
showing striking symmetries within the conjugacy classes, such as that of 480.60 in Figure 1.

Figure 1. Group picture of 480.60

For many groups, we provide character tables for both complex and rational characters. Rows correspond
to irreducible characters, and columns correspond to either conjugacy classes (for the complex character
table) or divisions (for the rational character table); for more details on conjugacy classes and divisions, see
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Section 5.1. For ease of terminology, in this discussion we refer to columns as corresponding to “classes” to
cover both cases simultaneously.

The headers for classes expand to show basic information such as the class’s size and centralizer, as well
as a representative for the class. As is standard, the row(s) above the table contain power map information on
classes. For each prime p dividing the order of the group and each class represented by an element g, the entry
above that column in the row labeled “pP” gives the label for the class of gp. For each complex character, in
the 2nd column of the table, we designate whether the representation is real, complex, or quaternionic.

Remark 3.1. For some groups which lie outside the range of the database, we still generate webpages
that display some basic information about the group by using on-the-fly calculations in GAP and SageMath.
Two types of groups that are handled this way are groups in GAP’s Small Groups database that are outside
the LMFDB collection, such as 512.402873, and large abelian groups, such as C3

12 × C6.

Remark 3.2. Statistics about the abstract groups database can be found at https://www.lmfdb.org/
Groups/Abstract/stats. We have computed many statistics based on the order factorization type of a
group, i.e., whether the order is a prime, a product of two distinct primes, a power of one prime times another
prime, etc. For instance, one can see the distribution of the nilpotency class of groups with order pk, where p

is a prime and k ∈ {3, . . . , 6}.

3.3. Subgroups. One of the main features of our work is a companion database of subgroups. Subgroups
have their own search functionality and labeling system (see Section 5.3). Given a group H, it is possible to
search the database for all groups G containing H as a subgroup, subject to numerical constraints such as the
index of H in G and the order of G. Cyclic subgroups, normal subgroups, and Sylow and Hall subgroups of a
group can all be searched for. Each subgroup also has its own page. These pages give information about the
ambient group and the quotient group structure (when normal). Related subgroups such as the centralizer,
normalizer, normal closure and core of the subgroup are given.

The subgroups database allows us to display the subgroup lattice for many groups. This lattice is
algorithmically very useful, allowing the computation of generating data about the group, such as the size
of a smallest generating set (called the rank)2 and how many such sets a group has, as well as expressions
for the group as a semidirect product, its linear and permutation degrees, etc. The subgroup lattice can be
viewed on a group page when it has fewer than 100 subgroup classes; see Figure 2 for an example. Inclusion
is indicated with lines, and clicking a particular subgroup reveals information about it, e.g., whether it is
maximal or solvable, its normalizer, its core. Subgroups are separated into levels vertically based on their
orders or by the number of prime factors in their order (the user can toggle between these two options), and
can be rearranged by clicking and dragging. When the diagram is too large to conveniently display on the
page, the full diagram can often be viewed on a separate linked page.

In addition, we provide profiles of the subgroups up to automorphism and up to conjugation. For each
order of subgroup, the profile lists the isomorphism types and multiplicities of classes of subgroups with that
type. For example, for the elementary abelian group C5

2 , the profile for subgroups up to conjugation would
list 155 conjugacy classes of subgroups of order 8 (all isomorphic to C3

2 ), and one class of subgroups of the
same order up to automorphism.

4. Computing presentations for solvable groups

As mentioned in Section 3.2, each group page contains various constructions of the group. In the case of
solvable groups we give particularly nice presentations, exploiting the fact that solvable groups are polycyclic.

2Although this is now more easily computable with Magma’s SmallestGeneratingSet command
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Figure 2. Subgroup diagrams of 18.4 up to conjugacy and autjugacy, as they appear on
the LMFDB

A group G is polycyclic if it has a descending chain of subgroups

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1

such that each Gi+1 is normal in Gi, and the quotient Gi/Gi+1 is cyclic. A polycyclic presentation is a
special type of presentation for the group G that takes advantage of this descending chain of subgroups; for
details, see [HEO05, Definition 8.7].

However, the polycyclic presentations in Magma use one generator for each prime dividing the order
of the group (counted with multiplicity). So, for example, the cyclic group of order 22 · 3 · 5 would have a
presentation with 4 generators instead of the simpler one using a single generator. Here we describe a process
for finding a more human-readable polycyclic presentation for a solvable group by using chains of subgroups.
One can pass between polycyclic presentations and subnormal filtrations with cyclic quotients:

(1) given a polycyclic presentation with generators {g1, . . . , gm}, the chain

1 ≤ H1 ≤ · · · ≤ Hm = G

will be a filtration of G with cyclic quotients, where Hi = ⟨g1, . . . , gi⟩;
(2) given a filtration of the form above, any choice of elements gi generating Hi/Hi−1 will give generators

for a polycyclic presentation.

Define the relative order of gi to be the order of the quotient Hi/Hi−1. We approach the search for a
presentation by first finding a filtration and then arbitrarily choosing generators.

We first construct all minimal length chains of subgroups, each normal in the next, with cyclic relative
quotients. We do this via a “top-down” approach, building them down from the top in layers until reaching
the trivial subgroup. This process guarantees a polycyclic presentation with a minimal number of generators;
we then compare all such minimal polycyclic presentations according to the following criteria.

(1) Maximize the number of generators with order equal to their relative order.
(2) Maximize the number of generators that commute with each other.
(3) Aim for relative orders that are non-increasing.
(4) Conjugacy relations should be “deeper” (within smaller groups in the filtration).

This process cannot feasibly be made canonical: at some points we make arbitrary choices, both for the
filtration and for the choice of generators.
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There are some groups for which the process of constructing and comparing all minimal length chains is
too time-consuming. In these cases we instead use two other algorithms, both of which run much faster, but
may not give as good a presentation. The first proceeds by greedily building the chains by starting with
H = G and iteratively choosing a random normal subgroup K < H with H/K cyclic. The second algorithm
simply refines the derived series by taking an abelian basis at each step in order to fill in the series to one
with cyclic quotients.

It is important to pick the presentation at the beginning of our computations for each solvable group, as
this presentation impacts certain attributes of the group, such as how we represent its elements.

5. Labels

A foundational principle of the LMFDB is to display every object with a unique label, an identifier that
carries mathematically relevant information which can ideally be computed in a deterministic way. The
primary role of the label is to serve as a permanent identifier for the object (so that it can be referenced in
the mathematical literature, for example). Labels generally encode a sequence of invariants of an object, and
provide a natural ordering. Conversely, a sequential ordering of all objects of a given type trivially allows one
to label them, by their position in the sequence. We will talk of having labels and an ordering interchangeably.
When sorting ordered tuples, we always mean lexicographically, and treat complex numbers as ordered pairs
of real numbers for this purpose.

We label small groups as N.i corresponding to the GAP ID encoded as a string, where N is the order of
the group and i distinguishes groups of the same order (as determined in GAP). If a group is not in the GAP
Small Groups database, we replace i with an incrementing letter code, assigning labels to groups as they are
added to our database.

The existence of automorphisms precludes having a definitive labeling de novo. Consequently, the labels
for conjugacy classes, characters, and subgroups depend on fixing an ordered list of generators, which we do,
and a specific realization of the group, i.e., as a permutation group, a polycyclic group, or as a matrix group.
The realization is important since, in each case, one can easily construct an injective set map from the group
to Z, which then orders elements of the group. We then need to have a reproducible method for generating
elements of a group. In the applications below, we found that picking pseudo-random group elements worked
efficiently; for details on how we generate such elements, see https://www.lmfdb.org/knowledge/show/
group.pseudo_random_elements.

5.1. Conjugacy classes and divisions. If G is a group and g1, g2 ∈ G, we say that g1 and g2 are
in the same division if there exists h ∈ G such that h−1g1h = gi2 for some i ∈ Z such that gcd(i, |g1|) = 1.
Divisions are unions of conjugacy classes, and rational-valued characters are constant on divisions. In fact,
the irreducible rational-valued characters form a basis for the space of functions that are constant on divisions,
as complex characters do for class functions. We say that a division is maximal if a representative generates a
maximal cyclic subgroup of G.

Full details of how we label conjugacy classes and divisions are given at https://www.lmfdb.org/
knowledge/show/group.division_computing_labels; here we describe some properties of the labeling.

Divisions are labeled with nA where n is a positive integer giving the order of a representative element
and A is a string made up of capital letters. They are ordered first by the size of a conjugacy class within the
division, and then by the number of conjugacy classes within a division.

Finding representatives for each division can be computationally expensive, so we focus first on maximal
divisions. From there, we can compute labels and representatives for other classes as follows. Working through
the maximal divisions in order, we use its chosen representative g and compute the classes of elements gi
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with 0 < i < |g| and gcd(i, |g|) > 1. The order of the non-maximal divisions is simply the order in which they
appear from this sequence (looping over divisions, and within that, powers of an element).

The label for a conjugacy class starts with the label of the division containing it. If there is only one
class within the division, the two labels are the same. When there is more than one class in a division nA, the
conjugacy classes are labeled nAj where j is an integer. The first class encountered will then be nA1. Let g

be an element representing this class. We then consider the conjugacy classes [g−1], [g2], [g−2], . . . . These
correspond to conjugacy class labels nA-1, nA2, nA-2, . . . . The label for the class is the first time it appears
in this sequence. Conjugacy classes which land in the same division have the same prefix, and will be grouped
together in the complex character table for the group.

5.2. Characters. When feasible, we give information on irreducible rational-valued and complex-valued
characters. The group Gal(Q/Q) acts on the complex characters, and the Galois orbits correspond to the
rational characters, with each rational character being simply the sum of the complex characters in an orbit.
We note that a rational-valued character may not arise from a rational-valued representation. The Schur
index gives the smallest multiplier for a rational character so that the resulting character arises from a
rational-valued representation.

Permutation representations of a group G can be realized using permutation matrices, and are thus
sums of irreducible representations. Transitive permutation representations are classified by their degree
n and T -number t [CHM98]. For a given irreducible representation, we can consider the “first” transitive
permutation containing it to be the smallest pair (n, t).

The labels for rational characters are of the form G.na where G is the label for the group, n is the degree,
and a is a lower-case letter which acts as a counter. The label for a complex character takes the form G.nak
where G.na is the label for the corresponding rational character and k is positive integer which serves as a
counter. In the character tables, characters are sorted by their labels viewed as a tuple (n, a) or (n, a, k). To
completely determine the labels, we just need to know the ordering among characters with the same degree.

For rational characters, we sort by (d,m, n, t) where d is the degree (which is explicitly given in the label),
m is the size of the Galois orbit of complex characters giving rise to it, and n and t refer to the smallest
containing permutation representation. Any remaining ties are broken by sorting on the vector of character
values using our ordering of conjugacy classes. Complex irreducible characters are given in the same order
as their corresponding rational characters, with characters within a Galois orbit ordered by their vectors of
values.

5.3. Subgroups. Labels for subgroups take one of four forms, depending on whether they are computed
up to conjugacy or automorphism, and whether or not the deterministic process described below succeeds.
(If it fails or we do not have all subgroups of a given order, we use a fallback nondeterministic label.) The
deterministic labels take the form N.i.m.a.c (for subgroups up to conjugacy) or N.i.m.a (for subgroups
up to automorphism). The piece N.i is the label of the ambient group G, m is the index of H in G, and a
and c are alpha-numeric identifiers that distinguish H up to automorphism and conjugacy, respectively. To
determine a and c we use the idea of Gassmann equivalence classes to order subgroups of the same index.

Definition 5.1. Two subgroups H1 and H2 of G are Gassmann equivalent if they intersect each
G-conjugacy class with the same cardinality. Equivalently, H1 and H2 have the same index m and the
permutation representations πH1 : G→ Sm and πH2 : G→ Sm have the same character (which counts the
number of cosets fixed by each conjugacy class).
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For more on Gassmann equivalence and related notions see [Sut21], and for full details on the subgroup
labeling scheme see https://lmfdb.org/knowledge/show/group.computing_subgroup_labels; here we
describe some aspects of the labeling.

In order to label Gassmann classes, we first fix an ordering of the conjugacy classes of G as in Section 5.1.
To each subgroup H we associate a vector of positive integers whose entries are the sizes of the intersections
of H with each conjugacy class. We then sort the subgroups using these vectors. An analogous process works
for Gassmann vectors up to automorphism, where we collect together G-conjugacy classes that are related by
an automorphism of G.

If there are multiple subgroups up to conjugacy or automorphism within a given Gassmann class, we use
the subgroup lattice to further order those remaining subgroups. We sort subgroups H in the same Gassmann
class by considering the collection of supergroups of H; if this does not suffice to distinguish Gassmann
equivalent subgroups, we resort to computing permutation representation and their associated characters.

Once we have an ordering inside the Gassmann classes, we assign a letter label to the Gassmann class and
concatenate a number from the ordering of subgroups inside the Gassmann class to create an alpha-numeric
value which we assign to a, and similarly, we assign an alpha=numeric value to c when we are able to
work up to conjugacy. For example, the label of A5 inside S5 (up to conjugacy) is 120.34.2.a1.a1. As
another example, there are two classes of subgroups (up to automorphism) of SL(3, 4) isomorphic to GL(2, 4)

with labels 60480.a.336.a1 and 60480.a.336.a2—these are Gassmann-equivalent but not related by an
automorphism—and four classes of subgroups (up to automorphism) of SL(3, 4) of order 8, each contained in
a different Gassmann class: 60480.a.7560.a1 (Q8), 60480.a.7560.b1 (C2 × C4), 60480.a.7560.c1 (D4),
and 60480.a.7560.d1 (C3

2 ).
In some cases, we store only a few subgroups of a given order (we may store the center of a group, for

example, but not other subgroups of that order) or the code for computing the labels did not finish. In these
cases, we append an arbitrary letter code to the N.i.m part of the label, with capital letters indicating that
subgroups are stored up to conjugacy and lower case indicating subgroups up to automorphism.

6. Connections and examples

We anticipate that the group home pages will be a valuable tool for everyone from undergraduate students
first learning abstract algebra to experts in the field. The layout of each page, the search features, and the
knowls allow for exploration of many group-theoretic concepts. Students can easily find examples of groups
with common features like simple or solvable groups, they can explore Sylow subgroups (and more generally
subgroup lattices), and they can learn about advanced topics such as series or character theory. Students can
also explore relationships between different attributes of groups. A quick search demonstrates, for example,
the existence of non-trivial groups that are perfect but not simple or A-groups3 that are not solvable.

For researchers, the abstract groups database is intimately connected with many other mathematical
objects in the LMFDB. We highlight some of those connections below.

6.1. Connections with other objects. One of the integral aims of the LMFDB is demonstrating links
between different mathematical objects. The LMFDB universe gives the big picture of various connections
that are related to the Langlands program. There are many related objects, and links between them are
displayed in the database. In this section we list other databases in the LMFDB which are linked with
the database of Abstract Groups. We describe the various connections to other LMFDB pages with the
group pages in Figure 3. Note that, at present, the boxes representing the LMFDB sections Belyi maps,

3A group G is an A-group if all its Sylow subgroups are abelian.
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Hypergeometric motives over Q, Lattices, and Modular curves in Figure 3 are currently only available on the
beta version of the LMFDB (https://beta.lmfdb.org/).

Galois groups
(Transitive groups)

Abstract groups

Number fieldsp-adic fields
Genus 2 curves

over Q

Belyi
maps

Classical modular
forms of weight 1

Artin reps

Higher genus
curves

Elliptic curves
over Q or Q(α)

Hypergeometric
motives over Q

Sato-Tate groups Lattices
Modular
curves

component
groups

monodromy
mod ℓ

auto.
groups

subgroups of
GL2(Z/NZ)

auto.
groups

torsion
groups

auto.
groups

monodromy
groups

Galois
groups

inertia
groups

projective image

image

Galois
groups

monodromy
groups

auto.
groups

Figure 3. Diagram illustrating the connections between abstract group pages and other
collections of objects in the LMFDB. Nodes in solid (green) and dotted (grey) rectangles are
on the production and beta version of the LMFDB, respectively.

Since many objects in the LMFDB link to groups, having a built-in database of groups makes it easy for
the user to find more information about the groups in question. Some groups may be familiar to the user,
such as those which arise as automorphism groups of genus 2 curves; others are more complicated.

For instance, Artin representations connect to abstract groups via both their image and their projective
image. One can also go from Artin representations to Galois groups (i.e., transitive permutation groups) by
taking a stem field for the field cut out by the image of the representation to get a number field, and then
taking the Galois group of its Galois closure. For a number field, one has the Artin representations of the
Galois group of the normal closure of the field. The following example illustrates this connection further.

12

18 Jun 2025 08:53:13 PDT
250122-RoyManami Version 2 - Submitted to LuCaNT

https://beta.lmfdb.org/
https://www.lmfdb.org/GaloisGroup/
https://www.lmfdb.org/Groups/Abstract/
https://www.lmfdb.org/NumberField/
https://www.lmfdb.org/padicField/
https://www.lmfdb.org/Genus2Curve/Q/
https://www.lmfdb.org/Genus2Curve/Q/
https://www.lmfdb.org/Belyi/
https://www.lmfdb.org/Belyi/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
https://www.lmfdb.org/ArtinRepresentation/
https://www.lmfdb.org/HigherGenus/C/Aut/
https://www.lmfdb.org/HigherGenus/C/Aut/
https://www.lmfdb.org/EllipticCurve/Q/
https://www.lmfdb.org/EllipticCurve/Q/
https://www.lmfdb.org/EllipticCurve/
https://www.lmfdb.org/Motive/Hypergeometric/Q/
https://www.lmfdb.org/Motive/Hypergeometric/Q/
https://www.lmfdb.org/SatoTateGroup/
https://www.lmfdb.org/Lattice/
https://www.lmfdb.org/ModularCurve/Q/
https://www.lmfdb.org/ModularCurve/Q/


Example 6.1. Consider the Artin representation with LMFDB label 4.5744.8t39.d.a, which has the
smallest conductor of all 4-dimensional irreducible Artin representations with group https://www.lmfdb.
org/Groups/Abstract/192.1493 [JR17]. This group is displayed as C3

2 : S4, but since the semidirect
product notation may not uniquely identify a group, the connection to a specific group page lets the user
obtain lots of information about this group. Similarly, the projective image of this group is C2

2 : S4, via which
the user is referred to the page https://www.lmfdb.org/Groups/Abstract/96.227 for more details.

6.2. Applications via Galois theory. Perhaps the most celebrated application of groups is their
usage in studying field extensions as a part of Galois theory. Below we give examples of how our database of
finite groups, together with the Galois correspondence, can be used to study objects in other collections in
the LMFDB.

Example 6.2. Let F = Q(α) be the number field with LMFDB label 5.1.35152.1, where α has minimal
polynomial f := x5 − x4 + 2x3 − 4x2 + x − 1. Then F has Galois closure L = Q(β) with LMFDB label
20.0.3354518684571451850752.1, where β has minimal polynomial

x20 − 2x19 + 10x17 − 15x16 + 40x14 − 64x13 + 46x12 + 8x11 − 32x10 + 8x9

+ 46x8 − 64x7 + 40x6 − 15x4 + 10x3 − 2x+ 1 ,

and G := Gal(L/Q) ∼= F5, the Frobenius group of order 20 (with LMFDB label 20.3). Examining the lattice
of subgroups up to conjugacy given on the 20.3 homepage, we see that F5 is solvable, so the roots of f can
be expressed by radicals. Computing fixed fields, we obtain the subfield lattice shown in Figure 4, where K

L

K

E F

Q(
√
13)

Q

5

2

2

5

2

2

5

1

C2

C5 C4

D5

F5

5

2

2

5

2

2

5

Figure 4. The subfield lattice of the number field with LMFDB label
20.0.3354518684571451850752.1 and the subgroup lattice of its Galois group F5.

and E are the number fields given by

x10 − x9 − 3x8 + 5x6 + x5 − 5x4 + 3x2 − x− 1

and

x4 + x3 + 2x2 − 4x+ 3 ,

respectively. We observe that the commutator subgroup of G is C5, the subgroup corresponding to E. Thus
E is the largest abelian subfield of L, with Galois group Gal(E/Q) ∼= Gab ∼= C4.
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Example 6.3. Let K = Q2(α) be the p-adic field with LMFDB label 2.4.6.7, where α has minimal
polynomial f := x4+2x3+2x2+2. Note that K is not Galois over Q2 and K has Galois closure Kgal = Q2(β)

with LMFDB label 2.12.18.59, where β has minimal polynomial

x12 − 2x11 + 6x10 + 4x9 + 6x8 + 12x7 − 4x6 − 8x3 + 16x2 − 8

and G := Gal(Kgal/Q2) ∼= A4, the alternating group of order 12 (with LMFDB label 12.3). The inertia
group I := I(Kgal/Q2) of Kgal is the abelian group C2

2 of order 4 (with LMFDB label 4.2). The wild inertia
group of Kgal (i.e., the unique 2-Sylow subgroup of I) in this case is equal to I.

Examining the lattice of subgroups up to conjugacy given on the 12.3 homepage, we obtain the subfield
lattice of Kgal/Q2, shown in Figure 5. It is clear from the subgroup lattice of 12.3 that Gal(Kgal/K) ∼= C3

and the extension K/Q2 is primitive. Also note that A4 is solvable of length 2, so we find two intermediate
fields E and F of Kgal such that Gal(Kgal/E) ∼= C2

2 and Gal(Kgal/F ) ∼= C2. Computing fixed fields, we
obtain the subfield lattice shown in Figure 5, where E and F are the p-adic fields given by x3 − x+ 1 and
x6+x2−1, respectively. The LMFDB labels for E and F are 2.3.0.1 and 2.6.6.1, respectively. We observe
that the commutator subgroup of G is C2

2 , the subgroup corresponding to E. Thus E is the largest abelian
subfield of Kgal, with Galois group Gal(E/Q) ∼= Gab ∼= C3.

This is an interesting example since K is the only degree 4 extension of Qp, for any p, which has Galois
group Gal(Kgal/Q2) ∼= A4.

Kgal

F

K E

Q2

3

2

2

3

4

1

C2

C3 C2
2

A4

3

2

2

3

4

Figure 5. The subfield lattice of the Galois closure of the p-adic field with LMFDB label
2.4.6.7 and the subgroup lattice of its Galois group A4.

Example 6.4. Let G be the Sato-Tate group J(O) with LMFDB label 1.4.F.48.48a. Let G0 be the
connected component of the identity and G/G0 be the component group of G. As noted on its homepage,
J(O) has the largest component group (C2 × S4, LMFDB label 48.48, with order 48) among Sato-Tate
groups of abelian surfaces over number fields.

Let A be an abelian variety of dimension g ≤ 3 defined over a number field k. Let K be the minimal
extension of k over which all endomorphisms of A are defined, i.e., such that End(AK) = End(Ak). By
[FKRS12, Proposition 2.17], then STA / ST0

A
∼= Gal(K/k), where STA is the Sato-Tate group of A.

Let C : y2 = x6 − 5x4 + 10x3 − 5x2 + 2x − 1 considered over Q, and let A = Jac(C). As shown in
[FKRS12], the variety A has Sato-Tate group J(O), realizing this group over Q, and the endomorphisms of
A are defined over the number field K = Q(

√
−2,
√
−11, a, b) where

a3 − 7a+ 7 = 0 and b4 + 4b2 + 8b+ 8 = 0 .

Applying the above proposition to this example, we have

C2 × S4
∼= G/G0 ∼= Gal(K/k) .

14

18 Jun 2025 08:53:13 PDT
250122-RoyManami Version 2 - Submitted to LuCaNT

https://www.lmfdb.org/padicField/2.4.6.7
https://www.lmfdb.org/padicField/2.12.18.59
https://www.lmfdb.org/Groups/Abstract/12.3
https://www.lmfdb.org/Groups/Abstract/4.2
https://www.lmfdb.org/Groups/Abstract/12.3
https://www.lmfdb.org/Groups/Abstract/12.3
https://www.lmfdb.org/padicField/2.3.0.1
https://www.lmfdb.org/padicField/2.6.6.1
https://www.lmfdb.org/padicField/2.4.6.7
https://www.lmfdb.org/SatoTateGroup/1.4.F.48.48a
https://www.lmfdb.org/Groups/Abstract/48.48


However, as shown in [FKRS12, Table 4], the curve C can also be used to realize 24 other Sato-Tate
groups by varying the base field. In other words, by taking a number field L with k ⊆ L ⊆ K and considering
the base change AL, we can obtain other Sato-Tate groups. For instance, examining [FKRS12, Table 8]
we see that J(T ) (LMFDB label 1.4.F.24.13a) is the unique Sato-Tate group occurring in genus 2 with
component group C2 ×A4. Computing the fixed field L of C2 ×A4 ≤ C2 × S4, we find that L = Q(

√
−11).

Thus the base change AL has Sato-Tate group J(T ), realizing another of the 52 possible Sato-Tate groups.
With further calculation, one can use other base changes of A to realize other Sato-Tate groups whose

component groups are subgroups of C2 × S4 by considering the lattice of subgroups given on the homepage
for C2 × S4 and computing fixed fields.

Galois theory can also be applied in a geometric context. The equivalence of categories between function
field extensions in one variable and non-singular projective curves (see [Sta18, Tag 0BXX], for instance)
allows us to study non-constant morphisms of curves by examining the associated extension of function fields.
We consider an example coming from the Families of higher genus curves with automorphisms collection,
available at https://www.lmfdb.org/HigherGenus/C/Aut/.

Example 6.5. Consider the refined passport with label 3.168-42.0.2-3-7. It corresponds to a unique
topological equivalence class of morphisms X → X/Aut(X) ∼= P1, where X is the Klein quartic curve, a
genus 3 curve with the largest possible number of automorphisms for its genus. (Such curves are known as
Hurwitz curves.) It has automorphism group Aut(X) ∼= PSL2(F7) (which has LMFDB label 168.42), and all
automorphisms are defined over the field K = Q(ζ7). By examining the lattice of subgroups of PSL2(F7)

given on its homepage and applying the Galois correspondence, we can find all intermediate covers Y with
X → Y → X/Aut(X) ∼= P1.

Computationally, this can be accomplished using Magma’s CurveQuotient command [BCP97]. Calling
this on each subgroup of PSL2(F7) in turn, we find three intermediate covers Y of genus 1, corresponding
to the subgroups of PSL2(F7) isomorphic to C2, C3, and C4. (All other quotients by non-trivial subgroups
of Aut(X) result in genus 0 curves.) Each of these curves can be equipped with the structure of an elliptic
curve by taking as the origin of the group law the image of (1 : 0 : 0) under the appropriate quotient map.
With some further computation (see [Elk99, Equation 2.10]), one can show that each of these elliptic curves
is isomorphic to the curve E : y2 = 4x3 + 21x2 + 28x over K. From this we observe that Jac(X) decomposes
as E3 up to isogeny.

6.3. Modular curves and subgroups of GL2(Z/NZ). The LMFDB currently has a database
of modular curves, available at https://www.lmfdb.org/ModularCurve/Q/. We conclude this section by
describing how properties of modular curves can be deduced from their corresponding subgroups of GL2(Z/NZ).
For a more comprehensive exposition of modular curves and subgroups of GL2(Ẑ), see [RSZB22] or [Zyw22].

Let E be an elliptic curve over Q and E[N ] be its N -torsion subgroup for each N ∈ Z≥1. The absolute
Galois group GQ := Gal(Q/Q) acts on E[N ], and since E[N ] ∼= (Z/NZ)2 as abelian groups, we obtain a
representation

ρE,N : GQ → Aut(E[N ]) ∼= GL2(Z/NZ) .

By choosing compatible bases, we can take the inverse limit and package these together as a single represen-
tation

ρE : GQ → lim←−
N

GL2(Z/NZ) = GL2(Ẑ) .

If E does not have complex multiplication, then Serre’s Open Image Theorem [Ser72] implies that the image
of ρE is an open subgroup of GL2(Ẑ), hence has finite index. Given an open subgroup H of GL2(Ẑ), one can
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define the modular curve XH whose K-points parametrize elliptic curves E/K such that img(ρE) ⊆ H (up
to conjugation). (For a precise definition of XH , see [RSZB22, Section 2.3] or [Zyw22, Section 3].)

For each N ∈ Z≥1, let πN : GL2(Ẑ) → GL2(Z/NZ) be the projection map. Every open subgroup
H ≤ GL2(Ẑ) contains ker(πN ) for some N , and the smallest such N ∈ Z≥1 is called the level of H. If H
contains ker(πN ), then H can be recovered from πN (H) as H = π−1

N (πN (H)). Thus to store H on a computer,
one can simply store generators for πN (H) where N is the level of H.

Although this is a database of modular curves, much of the geometric data is computed group theoretically.
Let H ≤ GL2(Ẑ) be an open subgroup of level N . Letting ΓH := ±πN (H) ∩ SL2(Z/NZ), then one can
determine the number of elliptic points and cusps of XH by studying the action of the matrices(

0 1

−1 0

)
,

(
0 1

−1 −1

)
,

(
1 1

0 1

)
on the coset space ΓH\ SL2(Z/NZ). This data can in turn be used to compute the genus of XH . We further
illustrate this connection in the example below.

Example 6.6. Consider the modular curve X0(6) of level 6 with LMFDB label 6.12.0.a.1. As a
containment H ⊆ H ′ of open subgroups of GL2(Ẑ) induces a morphism XH → XH′ of modular curves, we
have morphisms X0(6)→ X0(2) and X0(6)→ X0(3). On the homepage for X0(6), it is further claimed that
X0(6) is the fiber product of X0(2) and X0(3) over X(1)—we explain how this can be determined group
theoretically.

Let H2, H3, H6 be the subgroups of GL2(Z/2Z), GL2(Z/3Z), GL2(Z/6Z) corresponding to X0(2) (with
label 2.3.0.a.1), X0(3) (with label 3.4.0.a.1), and X0(6), respectively. Note that GL2(Z/6Z) has label
288.851 and the subgroup H6

∼= C2
2 ×S3 has subgroup label 288.851.12.c1.a1. Taking the inverse image of

H2 and H3 under the projection maps π6,2 : GL2(Z/6Z)→ GL2(Z/2Z), π6,3 : GL2(Z/6Z)→ GL2(Z/3Z), we
obtain subgroups H̃2 := π−1

6,2(H2) with subgroup label 288.851.3.a1.a1 and H̃3 := π−1
6,3(H3) with subgroup

label 288.851.4.b1.a1.
Either by examining the (very large) subgroup lattice diagram of GL2(Z/6Z) or by computing directly,

we find that H̃2 ∩ H̃3 = H6 and ⟨H̃2, H̃3⟩ = GL2(Z/6Z). This shows that H6 is the fiber product of H̃2 and
H̃3 over GL2(Z/6Z), and hence X0(6) is the fiber product of X0(2) and X0(3) over X(1), as depicted in
Figure 6.

X0(6) X0(2)

X0(3) X(1)

_
H6 H̃2

H̃3 GL2(Z/6Z)

_

Figure 6. The fiber product diagram for the modular curve X0(6), and the fiber product
diagram of the corresponding subgroups of GL2(Z/6Z).
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