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Abstract. We describe a deterministic process to associate a practical, per-
manent label to isomorphism classes of abelian varieties defined over finite
fields with commutative endomorphism algebra as long as they are ordinary
or defined over a prime field. In the ordinary case, we also provide labels for
the polarizations they admit.

1. Introduction

Let k be a field of size q = pa, where p is a prime. Building on the work of
Deligne [Del69], Howe [How95] and Centelghe–Stix [CS15] the third author devel-
oped in [Mar20; Mar21; Mar24; Mar25] tools that, when combined with the work of
Hofmann–Sircana [HS20], allow the enumeration of k-isomorphism classes of abelian
varieties of dimension g defined over k contained in isogeny classes satisfying (2.1)
and (2.2), as well as their polarizations when the class is ordinary. Along with
Mckenzie West, the authors have implemented these algorithms and enumerated
some of these isomorphism classes and low-degree polarizations for forthcoming in-
clusion in the LMFDB [LMFDBa] to expand the data about isogeny classes (see
[DKRV21]).

The purpose of this note is to describe a deterministic process to associate a
label, by which we mean a unique permanent identifier, to each of these objects. We
believe that useful, short labels that can gain widespread adoption in the community
are crucial for the long-term usefulness and intelligibility of results in the field.
Note that, unlike the labeling scheme for isogeny classes, the scheme we propose
does not include enough data to directly recompute the abelian variety (without
re-enumerating the isogeny class); it is also not stable under base change.

The third author’s algorithms rely on a bijection between certain isomorphism
classes of ideals and the isomorphism classes of abelian varieties to be enumerated
(§2). Accordingly, the labeling scheme we propose ultimately labels these isomor-
phism classes of ideals. Furthermore, when the abelian variety is ordinary we also
compute polarizations of low degree; this is done by defining a distinguished rep-
resentative I in the isomorphism class of ideals and giving a polarization λ on the
corresponding variety A as an element of the endomorphism algebra.

We close by describing our proposed labeling: a polarized abelian variety cor-
responding to a pair (I, λ) as above is labeled as
(1.1) g.q.isog - N.i.w.j - d.k,
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where g.q.isog is the label of the isogeny class (g is the dimension, q is the
size of the finite field, isog encodes the coefficients of the Weil polynomial; see
[LMFDBb]), N.i.w.j is the label of the isomorphism class of I (§§3.3, 3.4 and 3.5
– N.i determines the endomorphism ring §3.1), d is the degree d of λ and k is
determined by the sort key of λ (§3.6). When no polarization λ is given the last
part is omitted.

2. Abelian varieties and ideal classes

Throughout, let I be a k-isogeny class of abelian varieties of dimension g sat-
isfying:

the k-endomorphism ring of any abelian variety in I is commutative and(2.1)
the isogeny class is ordinary or k is the prime field Fp.(2.2)

By [Del69] and [CS15], there is an equivalence between the category of abelian
varieties in I (with k-homomorphisms) and the category of fractional R-ideals (with
R-linear morphisms), where R is the Frobenius order, a ring attached to I. This
equivalence induces a bijection between ICM(R), the ideal class monoid of R, and
the isomorphism classes in I, see [Mar21]. In this section we introduce the related
notation, definitions, and results we need, and refer to [Mar24; Mar25] for details.

Let h(x) be the characteristic polynomial of any abelian variety in I. By [Tat66,
Theorem 2.(c)] and assumpion (2.1), the 2g complex roots of h(x) are distinct. We
sort the distinct monic irreducible factors h1(x), . . . , hn(x) over Q of h(x) according
to the lexicographical order of their coefficients, starting from the constant term.

Consider the étale Q-algebra K := Q[x]/h(x); throughout we write

(2.3) K = K1 × · · · ×Kn,

where Ki := Q[x]/hi(x) is a number field, and denote by F the class of the variable
x in K and by BK the ordered Q-basis (V g−1, . . . , V, 1, F, . . . , F g) of K, where
V = q/F . Recall that an order S in K is a subring of K which is a full Z-lattice,
that is, the underlying additive group of S has rank 2g. The Frobenius order is
then R := Z[F, V ], the Z-span of BK , and an overorder (of R) is an order in K
containing R. We denote the unique maximal order of K by OK ; using (2.3) we
have OK = OK1 ⊕ · · · ⊕ OKn , where OKi is the ring of integers of Ki.

For S an order in K, a fractional S-ideal is a full Z-lattice in K which is
closed under multiplication by elements of S. A fractional S-ideal I is invertible
if for every maximal ideal p of S there exists a ∈ K× such that Ip = aSp. If S is
not maximal then not all fractional ideals are invertible, and ideal multiplication
induces a commutative monoid structure on the set of all fractional ideals of S.

The multiplicator ring of a fractional R-ideal I is the overorder defined by (I :
I) := {a ∈ K : aI ⊆ I}. Two fractional R-ideals I and J are weakly equivalent if
Ip ' Jp as Rp-modules for each maximal ideal p of R. The multiplicator ring is an
invariant of the weak equivalence class, and if S is an overorder, we denote by WS

the set of weak equivalence classes of fractional R-ideals with multiplicator ring S.
We need a finer equivalence relation on fractional R-ideals: two ideals I and J

are isomorphic if there exists a ∈ K× such that I = aJ . Multiplication is well
defined on these classes, and the set of isomorphism classes [I] of fractional R-ideals
I is denoted ICM(R), the ideal class monoid of R. Within ICM(R), the set of
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isomorphism classes of invertible fractional S-ideals for S an overorder is denoted
by Pic(S); ideal multiplication induces a group structure on Pic(S).

The trace dual ideal of a fractional R-ideal I is It :=
{
a ∈ K : TrK/Q(aI) ⊆ Z

}
.

For S an overorder and p a maximal ideal of S, we denote by typep(S) the Cohen-
Macaulay type of S at p, defined as dim(S/p)(S

t/pSt). Note that typep(S) = 1
whenever p is invertible. We then define the Cohen-Macaulay type of S to be
type(S) := maxp{typep(S)} as p ranges over the maximal ideals of S.

When I is ordinary, we can compute the polarizations on an abelian variety
A belonging to I from the data of the corresponding fractional R-ideal I in the
following manner: let Φ := {φ1, . . . , φg} be a CM-type of K which satisfies the
Shimura-Taniyama condition; see for example [CCO14, § 2.1.4.1]. By [How95], the
dual abelian variety A∨ corresponds to I

t, where · denotes complex conjugation on
K, defined by F := V , and a polarization corresponds to an element λ ∈ K× such
that λI ⊆ I

t, λ = −λ and =(φ(λ)) > 0 for every φ ∈ Φ. Moreover, its degree is
|It/λI|. Two polarizations λ and λ′ of I are isomorphic if there exists u ∈ S× such
that λ = uuλ′.

3. Labeling ideal classes and polarizations

The goal of this section is to define a deterministic procedure to attach a label
and a distinguished representative to each ideal class in ICM(R), where R is the
Frobenius order defined in §2, and to the polarizations they admit, when applicable.

3.1. Labeling overorders. An overorder S is labeled N.i where N = [OK :
S] and i is the index of S when all overorders of index N in OK are sorted in
lexicographic order according to the sort key s(S) := [d, n1, . . . , ng(2g+1)], defined
as follows. Let H be the matrix whose rows are the coefficients of any Z-basis
of S written with respect to BK . Then d is the least common multiple of the
denominators of the entries of H and n1, ..., ng(2g+1) are the entries of the upper
triangular part of the (upper triangular) Hermite Normal Form of dH.

3.2. Sorting maximal ideals. In what follows we will need ordered sets of
maximal ideals for a fixed overorder S. We do this by defining sort keys and using
the lexicographical order; while our process only sorts maximal ideals within the
same order, this is sufficient for our purposes. Let pi : K → Ki be the natural
projection onto the i-th component in (2.3). For P a maximal ideal of OK , there
exists a unique index 1 ≤ j ≤ n such that pj(P) is a maximal ideal of OKj and
pl(P) = OKl

for l 6= j. We define then the sort key s(P) of P to be [j,m, n]
where m.n is the LMFDB label of pj(P); here m is the norm of the ideal and n is
a tiebreaker [CPS20]. If p is a maximal ideal of a non-maximal order S, then the
sort key of p is defined to be the lexicographically smallest sort key among those of
the finitely many maximal ideals P of OK above p.

3.3. Labeling and distinguished representatives of ideal classes. Let
J be a fixed fractional R-ideal with multiplicator ring S. For any fractional R-
ideal I which is weakly equivalent to J we have I = J(I : J) where (I : J) :=
{a ∈ K : aJ ⊆ I} is an invertible fractional S-ideal. In fact, by [Mar20, Corol-
lary 4.5, Theorem 4.6], we have a bijection

ICM(R)←→
⊔

R⊆S⊆OK

(WS × Pic(S)) , [I] 7→ (ωJ , [(I : J)])
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where S runs over the finitely many overorders of R.
We define the distinguished representative of an arbitrary ideal class [I] as the

multiplication of the distinguished representative J of the weak equivalence class
ωI of I (see §3.4) with the distinguished representative of [(I : J)] (see §3.5). We
define the label N.i.w.j of an arbitrary ideal class [I] as the concatenation of the
label N.i.w of ωI defined in §3.4 together with the index j of [(I : J)] ∈ Pic(S)
when enumerated using the sort-key defined in §3.5.

3.4. Labeling and distinguished representatives of weak equivalence
classes. We now construct a label and a distinguished representative J for each
weak equivalence class ω of WS for a fixed overorder S. Throughout, let N.i be the
label of S and S := (p1, . . . , pu) be the ordered set of non-invertible maximal ideals
of S. Define the label (resp. distinguished representative) of the invertible class of
WS as N.i.1 (resp. 1 · S). For each class ω ∈ WS and any I ∈ ω, set s(ω) := [1] if
S = ∅ and

s(ω) :=
[
dim(S/pi)(I/piI) : 1 ≤ i ≤ u

]
,

otherwise. If type(S) ≤ 2, the string s(ω) is a complete invariant: if typepi
(S) = 1

then Ipi
' Spi

by, for example, [Mar24, Proposition 3.4]; if typepi
(S) = 2 then

either Ipi
' Spi

or Ipi
' St

pi
by [Mar24, Theorem 6.2]. We lexicographically sort

WS accordingly and define the label of the wth class as N.i.w.
If type(S) = 1, then we are done, since WS consists only of the invertible

class. If type(S) = 2, it remains to define the distinguished representative of each
non-invertible class ω ∈ WS : Let d be the smallest positive integer such that
dSt ⊆ S, S0 := (q1, . . . , qr) ⊆ S be the ordered set of maximal ideals of S at which
typeqi

(S) = 2, and m1, . . . ,mr be positive integers such that qmi
i Sqi

⊆ (dSt)qi
.

Then for I any member of ω, we define the distinguished representative J of ω to
be

J :=

r∑
i=1

((Ii + qmi
i )

∏
j ̸=i

q
mj

j ),

where Ii := S if Iqi
' Sqi

and Ii := dSt if Iqi
' (dSt)qi

; see [Mar24, Lemma 6.4].
Now, we consider the case type(S) > 2. The following procedure is more time

consuming than the previous one. For each pi ∈ S, put Ti := (pi : pi); S ⊊ Ti yields
a surjective group homomorphism Pic(S)→ Pic(Ti) induced by the extension map.
Let Ki be its kernel and set Gi := (T×

i /S×) × Ki. Sort the orders Ti by the size
of Gi from smallest to largest, breaking ties using the ordering on the ideals pi.
Let T be first among the sorted orders Ti. Let U be a transversal of T×/S× and
K be a set of representatives L of the corresponding Ki satisfying LT = T . By
recursion, we assume that we have already computed distinguished representatives
for the elements of WT , which we denote by J1, ..., Jt.

Fix now a non-invertible ω ∈ WS . By [Mar25, Proposition 6.2], the class ω
admits a representative I0 such that I0T = Ji for a unique index i. Every fractional
S-ideal I1 weakly equivalent to I0 satisfying I1T = Ji is of the form I1 = u · L · I0
for unique u ∈ U and L ∈ K. Since U and K are finite sets, we list all such ideals
I1 and sort them according to their sort key s(I1), defined in the same way as if
I1 were an order (§3.1). Finally, define the distinguished representative J of ω to
be the first ideal of the sorted list and the sort key s̃(ω) of ω as s(ω) concatenated
with s(J). Sort WS accordingly and define the label of the wth class as N.i.w.
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3.5. Labeling and distinguished representatives of invertible ideal
classes. We start by computing some description of Pic(R) using [KP05]; we
then need to fix an ordering of the elements and ideals of R representing each. We
choose a set P of generators of Pic(R) by iterating over the maximal ideals of R,
sorted first by norm and then by the sort-key defined in §3.2, keeping only the ones
that enlarge the group generated, until we generate all of Pic(R). Now, consider
an overorder S, and write Pic(S) ' Z/m1Z × · · · × Z/mkZ with mi | mi+1. The
ordered set PS := (pS : p ∈ P) generates Pic(S), and we seek to construct a basis
from it by iteratively choosing elements gk, . . . , g1 ∈ Pic(S) of order mk, . . . ,m1.
At stage i, let Hi := 〈gi+1, . . . , gk〉 and choose Li with class gi ∈ Pic(S) to be the
first product of elements of PS (by lexicographic order on exponent vectors) with
order mi both in Pic(S) and Pic(S)/Hi. We sort the elements g ∈ Pic(S) by writ-
ing them as g = ge11 · · · g

ek
k with 0 ≤ ei ≤ mi − 1 and we define the distinguished

representative of g as Le1
1 · · ·L

ek
k .

3.6. Labeling and distinguished representative of polarizations. As-
sume now that the isogeny class I is ordinary, and that I is the distinguished
representative of its isomorphism class. For each isomorphism class of polariza-
tions of I, we define a distinguished representative as follows. The image of the
multiplicative group U := 〈uu : u ∈ S×〉 under the map

LogΦ : K −→ Rg a 7→ (log |φ1(a)|, . . . , log |φg(a)|),
is a lattice L in Rg. Fix a polarization λ of I. Consider the elements u ∈ S×

minimizing the quantity |LogΦ(uu) + LogΦ(λ)|. Sort them with respect to the
lexicographic order given by the coefficients with respect to the basis BK and let u0

be the first one. Then we set the distinguished representative of the isomorphism
class of λ to be λ0 := λu0u0, and sort the isomorphism classes of polarizations of
I of the same degree d by lexicographically ordering the coefficients (n1

e , . . . ,
n2g

e )
of their distinguished representatives written with respect to the basis BK by the
sequence (e, n1, . . . , n2g).

3.7. Examples. A Magma implementation of the procedures described above
is available at [LMF]. We list some interesting examples.

(i) For g = 2, the smallest q so that there exists an isogeny class with an
endomorphism ring with Cohen Macaulay type 3 (largest possible for g =
2 by [Mar24, Proposition 4.9]) has label 2.5.a_g. The particular overorder
S is the unique order with [OK : S] = 8, has 5 weak equivalence classes
and trivial Picard group. This gives 5 isomorphism classes, with labels
2.5.a_g.8.1.w.1 for 1 ≤ w ≤ 5.

(ii) For g = 2 and q = 5, there are two isogeny classes (twists of each other)
with maximum size of Picard group. In both cases the Picard groups is
C12. See 2.5.b_ac and 2.5.ab_ac.

(iii) For g = 2 and q = 5, whenever the Picard group has size 8, it is isomorphic
to C4 × C2, and there are three such examples. In one case, 2.5.a_e,
the Frobenius order is maximal; the other two examples (2.5.b_e and
2.5.ab_e) have Frobenius order of index 50.
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