
Contemporary Mathematics

A Census of Genus 6 Curves over F2

Yongyuan Huang, Kiran S. Kedlaya, and Jun Bo Lau

Abstract. We compile a complete list of isomorphism class repre-
sentatives of curves of genus 6 over F2. We use explicit descriptions
of canonical curves in each stratum of the Brill–Noether stratifi-
cation of the moduli space M6, due to Mukai in the generic case.
Our computed value of #M6(F2) agrees with the Lefschetz trace
formula as recently computed by Bergstrom–Canning–Petersen–
Schmitt. We also report progress on compiling a corresponding
list in genus 7.

1. Introduction

For g > 1, let Mg denote the moduli stack of curves of genus g. (All
“curves” herein are smooth, projective, and geometrically irreducible
unless otherwise specified.) For each prime power q, the set Mg(Fq)
of Fq-valued points of Mg is finite; it is naturally identified with the
set of isomorphism classes of curves of genus g over Fq. We equip
Mg(Fq) with the measure which gives the isomorphism class of a curve
C the weight 1

#Aut(C)
, as in the Lefschetz trace formula for Deligne–

Mumford stacks [Beh93]. (Here we count automorphisms of C over
Fq itself, not its base extension to an algebraic closure.) The resulting
stacky point count #Mg(Fq) can also be interpreted as the number of
geometric isomorphism classes of genus g curves which admit a model
over Fq (see Lemma 4.2 for the relationship between these two counting
problems).
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Since Mg has relative dimension 3g − 3 over Z, it is feasible to
compute the set Mg(Fq) for small values of g and q, especially for
q = 2 where this has been done previously for g ≤ 5 [Xar20, Dra24].
In this paper, we extend the computation to the case g = 6.

Theorem 1.1. We obtain an explicit list of isomorphism class rep-
resentatives for M6(F2): it consists of 72227 elements, and for the
weighting by automorphisms we have

(1) #M6(F2) = 68615.

A list of isomorphism class representatives, as well as the Sage-
Math [Sag23] and Magma [BCP97] code used to generate it, can
be found at

https://github.com/junbolau/genus-6.
The list is also available via the table of isogeny classes of abelian va-
rieties over finite fields in the L-functions and modular forms database
(LMFDB) [LMF24]. We observe that 38327 of the 164937 isogeny
classes of abelian sixfolds over F2 contain at least one Jacobian, repre-
senting all 20 of the possible Newton polygons, and that the maximum
number of Jacobians in a single isogeny class is 20.

Our approach to Theorem 1.1 follows the partial census carried out
in [Ked24b] (which was limited to curves with particular zeta func-
tions, see below): for each stratum in the Brill–Noether stratification of
M6, we use the descriptions of general canonical curves in each stratum
(due to Mukai [Muk93] for the generic stratum) to construct a cover-
ing set for the isomorphism classes of curves over F2 in that stratum.
We then make extensive use of Magma’s implementation of function
fields to identify isomorphic curves and compute automorphism groups;
the only groups that occur are

C1, C2, C3, C4, C2 × C2, C5, C6, S3, C10, D5, D10, A5.

We have two main applications in mind for Theorem 1.1. One is to
identify curves with a given zeta function; for example, the following
statements can now be verified by database queries in LMFDB.

• The maximum number of F2-points on a curve of genus 6 is
10, achieved by exactly two curves [Rig10].

• There are 70 supersingular curves of genus 6 over F2, with 28
distinct zeta functions.

• There is no curve of genus 6 over F2 with any of the three pos-
sible zeta functions for an excessive genus 6 curve allowed by
[FGH, Theorem 3.2]. We thus recover [FGH, Theorem 5.1]:
the maximum gonality of a curve of genus 6 over F2 is 6.
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• There is no curve C of genus 6 over F2 with #C(F24) = 0.
This recovers the previous assertion as well as a nonexistence
statement made in [Ked22, §6].

• There is a unique curve C of genus 6 over F2 with (#C(F2i))
6
i=1 =

(0, 0, 0, 20, 15, 90) [Ked23, Lemma 10.2].
• As reported in [Ked24b, Table 1], there are 52 curves with

zeta functions matching one of the options in [Ked24b, Ta-
ble 2]. As shown in [Ked23], this list includes every curve of
genus 6 admitting an étale double cover with trivial relative
class group.

The other intended application is to the computation of the ratio-
nal cohomology of Mg. There has been much progress in this direction
recently; for instance, it was shown in [CL24b, Corollary 1.6] that for
g ≤ 6, #Mg(Fq) is a polynomial in q (this has been subsequently im-
proved, see below). More precisely, this follows from the Lefschetz trace
formula and the fact that in these cases, the rational cohomology of
Mg can be computed using the tautological Chow ring. The latter can
be computed using the SageMath package described in [DSvZ21]; by
so doing, one can recover the explicit polynomials for g = 4, 5, and 6
(see [BT07, §4] or [BFP24, Theorem 1.5] for g = 4 and [BCPS] for
g = 5, 6). The resulting formula for g = 6, q = 2 agrees with (1); while
Theorem 1.1 is in principle logically independent of this agreement,
admitting it allows for an alternate justification of the correctness of
our result (see §4).

On the other hand, a tabulation of curves of genus g also yields, for
every positive integer n, a point count for the stack Mg,n of n-pointed
genus g curves (where the points are distinct and distinguishable) or
more generally any quotient of Mg,n by a subgroup of Sn. For example,
Theorem 1.1 yields the following.

Corollary 1.2. We have

#M6,1(F2) = 223317,(2)
#(M6,2/S2)(F2) = 471210,(3)

#M6,2(F2) = 650838,(4)
#(M6,3/S3)(F2) = 927153,(5)

#M6,3(F2) = 1679646,(6)
#(M6,4/S4)(F2) = 1794569.(7)

In all but the last case, [CLPW24, Theorem 1.5] implies that the
point count over Fq is a polynomial in q (and this is suspected in the
remaining case), but as of now the computation of these polynomials
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remains infeasible using [DSvZ21]. Our computation provides one
linear constraint on the coefficients of the polynomial, and thus reduces
by one the number of rational cohomology groups that need to be
computed in order to determine the polynomial. (One could adapt our
methods to perform a census over F3 and thus obtain a second linear
constraint; we do not plan to do this.)

We observe that [Ked24b] also includes a partial census of genus 7
curves over F2, which it should be possible to similarly upgrade to a full
census; we report some progress at the end of this paper. For compar-
ison, we note that the existence of polynomial formulas for #M7(Fq)
and #M7,1(Fq) has recently been established in [CLPW24, Theo-
rem 1.1, Theorem 1.5]; the explicit formula for #M7(Fq) will appear in
[BCPS]. Combining the latter with Corollary 1.2 and known polyno-
mial formulas for #Mg,n(Fq) for g ≤ 6 will yield the value of #M7(F2).
(The latter is computed by first computing the point count on the com-
pactification M7 parametrizing stable curves; removing the boundary
contribution requires some point counts on Mg,n for g < 7.)

It is unclear whether one can push this further, say to genus 8 or
even 9. On one hand, the expected number of curves (approximately
23g−3 in genus g) is manageable, and we again have explicit descrip-
tions of canonical curves in these genera [IM03, Muk10, Muk22]. On
the other hand, these descriptions are currently only available over an
algebraically closed based field; moreover, it is known that #M8(Fq)
admits a polynomial formula (see again [CLPW24, Theorem 1.1]) but
it is unclear whether it is feasible to compute this polynomial using cur-
rent technology. Moreover, it is known that #Mg(Fq) does not admit
a polynomial formula for any g ≥ 9 (see yet again [CLPW24, Theo-
rem 1.1]), although for each fixed g it is expected that one can express
#Mg(Fq) in terms of Fourier coefficients of certain automorphic forms,
such as the discriminant modular form ∆.

2. The Brill–Noether stratification of M6

We first recall some relevant terminology and facts about M6.
Throughout this discussion, let C be a curve of genus g over a finite
field k and let k be an algebraic closure of k. Let K be the canonical
divisor on C, and |K| be the canonical linear system.

A grd on C is a linear system of dimension r and degree d, which
if basepoint-free defines a degree d morphism C → Pr

k. We call C
hyperelliptic if there is a finite morphism C → P1

k of degree 2, or
equivalently if C admits a g12 (which is automatically basepoint-free
if g ≥ 1). We call the morphism ι : C → Pg−1

k defined by |K| the
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canonical morphism. For g ≥ 2, |K| is very ample if and only if C is not
hyperelliptic. Thus if C is nonhyperelliptic, the canonical morphism
ι is an embedding, and if C is hyperelliptic, ι factors as a degree 2
morphism C → P1

k followed by the Veronese embedding P1
k → Pg−1

k .
In particular, every genus two curve is hyperelliptic.

For g ≥ 4, we say C is trigonal if C admits a g13 but not a g12;
let Tg be the stack of smooth trigonal curves. The moduli space Tg

admits a stratification by locally closed substacks Tg,n where n runs
over integers with 0 ≤ n ≤ g+2

3
and n ≡ g (mod 2). The integer

n denotes the Maroni invariant of a trigonal curve C, defined as the
unique nonnegative integer n such that the trigonal cover C → P1

k

factors through a closed embedding
C → Fn := PP1

k
(OP1

k
⊕O(n)P1)

in such a way that the structure map Fn → P1
k restricts to the trigonal

cover C → P1
k. Note that Fn is ruled by the fibers of the structure map;

it is in fact the nth Hirzebruch surface (which for n = 0 degenerates
to P1

k ×k P
1
k), and can also be represented as an (n, 1)-hypersurface in

P1
k ×k P

2
k.

Last but not least, we say C is bielliptic if it admits a degree 2 map
to a genus 1 curve over k. Any such map gives rise to a g14, but not
conversely.

Due to work of Petri and Mukai [Muk93], we have the following
classification of genus 6 curves over finite fields.

Theorem 2.1. Let C be a curve of genus 6 over a finite field k.
Then one (and only one) of the following holds.

(1) The curve C is hyperelliptic.
(2) The curve C is bielliptic.
(3) The curve C occurs as a smooth quintic in P2

k.
(4) The curve C is trigonal of Maroni invariant 0. In this case,

C occurs as a curve of bidegree (3, 4) in P1
k ×P1

k.
(5) The curve C is trigonal of Maroni invariant 2. In this case,

C occurs as a complete intersection of type (2, 1) ∩ (1, 3) in
P1

k ×k P2
k, where the (2, 1)-hyperplane is isomorphic to the

Hirzebruch surface F2.
(6) The curve C occurs as a transverse intersection of four hyper-

planes, a quadric hypersurface, and the 6-dimensional Grass-
mannian Gr(2, 5) in P9

k.

Proof. Most of the above follows from Petri’s theorem. For the
details in the last case, see [Ked24b, Theorem 3.1] and the references
therein. □
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Remark 2.2. Curves as in case 6 of Theorem 2.1 are known as Brill–
Noether-general curves (c.f. [PV15, Theorem 4.1]). We will henceforth
refer to them as generic curves of genus 6.

Remark 2.3. As stated in [PV15, Theorem 4.1], the space M6 can
be stratified into locally closed substacks consisting of the loci corre-
sponding to each of the cases in Theorem 2.1. In particular:

(1) The locus H6 of hyperelliptic curves of genus 6 has dimension
11.

(2) The locus B6 of bielliptic curves of genus 6 has dimension 10.
(3) The locus Q6 of smooth plane quintic curves of genus 6 has

dimension 12.
(4) The locus T6,0 of trigonal curves of genus 6 with Maroni in-

variant 0 has dimension 13.
(5) The locus T6,2 of trigonal curves of genus 6 with Maroni in-

variant 2 has dimension 12.
(6) The locus MBN

6 of generic curves of genus 6 has dimension 15
(it is open in M6).

3. Tabulation of data

We begin by recording a few convenient facts that allow us to more
efficiently search and filter putative genus 6 curves.

(1) Using an analogue of the explicit formula from analytic number
theory, Serre (c.f. [Ser20, Theorem 5.3.2, 7.1 Table 1] shows
that a curve of genus 6 has at most 10 F2-points, which is a
notable refinement from the Hasse-Weil bound 15.

(2) LMFDB contains a complete list of isogeny classes of abelian
varieties of dimension 6 over F2 and their corresponding L-
polynomials. Using the fact that a curve and its Jacobian
have the same Weil polynomial, we recover a finite set con-
taining the tuple (#C(F2i))

6
i=1 for any curve C of genus 6 over

F2. The relevant code written in SageMath can be found in
./Census/Shared/weil_poly_utils.sage in our code base
(taken from [Ked24b]). We make use of this list when it
would presumptively speed up our tabulation process.

In several cases, we use the orbit lookup trees introduced by the
second author (see [Ked24b, Appendix A]) to efficiently compute orbit
representatives for the action of a group G on n-element subsets of a
finite set S equipped with a left G-action for small values of n. The
implementation of this algorithm in SageMath can be found in the
file ./Census/Shared/orbits.sage in our code base (again taken from
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[Ked24b]). The orbit lookup tree algorithm and implementation have
subsequently been improved [Ked24a], and we have been using the
updated version in our census-making in the genus 7 case.

To simplify the code somewhat, initially we only construct a finite
set of genus 6 curves over F2 which meets every isomorphism class
with “limited redundancies”. We use a separate postprocessing step to
remove these redundancies (see §3.7).

3.1. Hyperelliptic curves. Here we follow the strategy used in
[Xar20, Dra24] where the enumerations were done in cases g = 4, 5.
This strategy is adapted to characteristic 2; for a good approach in odd
characteristic, see [How25].

Any hyperelliptic curve of genus g over F2 can be represented as y2+
q(x)y = p(x) with p(x), q(x) ∈ F2[x] and 2g+1 ≤ max{2 deg(q(x)), deg(p(x))} ≤
2g+2. Xarles presented a method to determine the isomorphism class
of a hyperelliptic curve using the action of PGL2(F2) on F2[x]≤g+1.

Lemma 3.1. ([Xar20], Lemma 1) Let H1, H2 be hyperelliptic curves
represented by the equations y2 + qi(x)y = pi(x) for i ∈ {1, 2} re-
spectively as above. Suppose that H1

∼= H2. Then there exists A ∈
PGL2(F2) such that q2(x) = ψg+1(A)(q1(x)), where the action of PGL2(F2)
on F2[x]≤n is given by

ψn(A)(q(x)) := (cx+ d)nq

(
ax+ b

cx+ d

)
, A =

(
a b
c d

)
∈ PGL2(F2).

We compute orbit representatives for this action, test for pairwise
isomorphism, and record the resulting curves. The implementation of
this method can be found in the folder ./Census/hyperelliptic/ in
our code base.

3.2. Bielliptic curves. Here we follow a construction from [Ked24b]
for enumerating bielliptic curves of genus 7 over F2. As the core ele-
ments of the argument exhibit no dependence at all on the genus, it
is straightforward to replicate in genus 6; this case was not needed in
[Ked24b] because in that setting (where the zeta function is heavily re-
stricted) one can use a more conceptual argument to rule out bielliptic
curves of genus 6.

By Riemann–Hurwitz plus the fact that double covers in charac-
teristic 2 have only wild ramifications, the map from a bielliptic curve
C of genus 6 to its elliptic quotient E has ramification divisor of the
form 2D where D is an effective divisor of degree g − 1 = 5 on E.
We may thus generate all bielliptic curves by enumerating over a set
of isomorphism class representatives of elliptic curves E over F2 (there
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are 5 of them). For each E, we use Magma to enumerate over all
effective divisors D of degree 5. For each D, we enumerate over all
order-2 quotients of the ray class group of 2D, form the corresponding
abelian extension, then check to see if it indeed has genus 6 (and if so
record the resulting curve). The implementation of this method can be
found in ./Census/bielliptic/ in our code base.

3.3. Smooth plane quintic curves. Since the space of quintic
polynomials over F2 has dimension

(
7
2

)
= 21, we can skip the removal of

redundancy using the action of GL(3,F2); we simplify identify all of the
nonsingular polynomials and record the resulting smooth curves. The
implementation of this method can be found in ./Census/plane_quintic/
in our code base.

3.4. Trigonal curves of Maroni invariant 0. In this case, we
are looking for (3, 4)-curves in P1×P1, and we follow the strategy used
in [Ked24b]. We first compute orbit representatives for the action of
PGL2(F2)× PGL2(F2) on all subsets of (P1 ×P1)(F2). For each orbit
representative, we identify the (3, 4)-polynomials which vanish on the
points in the chosen subset and do not vanish elsewhere; since we are
working over F2, this is an affine subspace of the vector space of (3, 4)-
polynomials. We then pick out the nonsingular polynomials and record
the resulting smooth curves. The implementation of this method can
be found in ./Census/trigonal_maroni_0/ in our code base.

3.5. Trigonal curves of Maroni invariant 2. In this case, we
are looking for complete intersections of type (2, 1)∩ (1, 3) in P1 ×P2.
More specifically, if we write P1 × P2 = ProjF2[x0, x1; y0, y1, y2], then
we may take the (2, 1)-hypersurface X1 to be

(8) (x20 + x21)y1 + x0x1y2 = 0.

Indeed, over a field of characteristic 0, the equation of the Hirzebruch
surface Fn is isomorphic to the hypersurface defined by xn0y1 − xn1y2 in
P1 × P2 (c.f. [Huy04] Exercise 2.4.5), and we obtain (8) by taking
n = 2 and making a change of variables to get an equation with smooth
mod-2 reduction.

The hypersurface (8) is fixed by the group G generated by the three
involutions

x0 ↔ x1; y0 7→ y0 + y1; y0 7→ y0 + y2.

We now proceed as in the previous case: we compute orbit representa-
tives for the action of G on all subsets of X1; for each orbit representa-
tive, we identify the (1, 3)-polynomials which vanish on the points in the
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chosen subset and do not vanish elsewhere; we then pick out the nonsin-
gular polynomials and record the resulting smooth curves. The imple-
mentation of this method can be found in ./Census/trigonal_maroni_2/
in our code base.

3.6. Generic curves. Here we follow a modified version of the
strategy used in [Ked24b]. This is the most computationally intensive
case. We first identify orbit representatives for the action of PGL5(F2)
on 4-tuples of points in P9∨(F2). Each 4-tuple defines 4 linear forms
and hence 4 hyperplanes on P9; we next compute representatives for the
linear action of PGL4(F2) on such 4-tuples preserving the intersection
of the 4 hyperplanes. We record all cases where the intersection of the 4
hyperplanes with the Grassmannian Gr(2, 5) is irreducible with singular
locus of codimension greater than 1; there are 17 such intersections, of
which 7 are smooth, corresponding to the fact that quintic del Pezzo
surfaces over a finite field are indexed by conjugacy classes in S5 (e.g.,
see [Tre20, Table 1]).

For each of these 17 intersections, we first record all the quadrics
defined on the span of the 4 linear forms, which reduces the enumer-
ation of quadrics from a

(
10
2

)
= 55-dimensional space to a

(
7
2

)
= 21-

dimensional space); we then record the cases where the intersection is
smooth of genus 6. The implementation of this method can be found
in ./Census/generic/ in our code base.

3.7. Postprocessing. For each stratum, the computation described
above yields a finite set of curves of genus 6 over F2 lying in that stratum
and including at least one representative of each isomorphism class. It
then remains to remove redundant representatives.

For this, we first hash the curves by their zeta function, or equiv-
alently by the function C 7→ (#C(F2i)

6
i=1). Within each hash class,

we use Magma to construct the function field of each curve, then use
Isomorphisms to test whether any pair of curves is isomorphic. Once
this is done, we compute the automorphism group of each curve that
remains.

For the record, we mention some bugs in Magma that we had to
work around. These were fixed in subsequent releases based on our
reports.

• For two function fields, the function Isomorphisms returns a
list of all isomorphisms between the two fields, but in some
cases with repeated entries. This caused AutomorphismGroup
to yield errors in certain cases, for which we computed the
group structure directly from the output of Isomorphisms.
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• For two function fields, the function IsIsomorphic sometimes
returned false even when the two fields are isomorphic. We
instead tested whether Isomorphisms returns a nonempty list.

4. Consistency checks

The proof of Theorem 1.1 implicitly depends on the correctness
both of the relevant features of the underlying computational systems
(in particular SageMath and Magma) and of our implementation of
the search strategies described above. It is thus highly desirable to
perform some logically independent consistency checks of the resulting
data. We describe several such checks here.

4.1. Point counting on M6. We first verify the numerical as-
sertion (1). By [CL24b, Corollary 1.6], there exists a monic polyno-
mial P (T ) ∈ Z[T ] of degree 15 such that #M6(Fq) = P (q) for every
prime power q. On account of the Lefschetz trace formula for Deligne–
Mumford stacks [Beh93, Theorem 3.1.2], it is a feasible but challeng-
ing computation to extract the exact polynomial by computing in the
tautological ring of M6 as indicated (and implemented) in [DSvZ21].

Theorem 4.1. For every prime power q, we have

#M6(Fq) = q15 + q14 + 2q13 + q12 − q10 + q3 − 1.

In particular, #M6(F2) = 68615 as asserted in Theorem 1.1.

Proof. See [BCPS]. □

Given Theorem 4.1, one can give an alternate proof of Theorem 1.1
by independently checking the following two concrete assertions:

• For each tabulated curve C, the order of #Aut(C) is no greater
than the reported value.

• No two of the tabulated curves lying in the same stratum are
isomorphic. (For an extra consistency check, we tested this in
Magma also for pairs of curves not lying in the same stratum.)

Given these assertions, one may then directly verify from our data that
#M6(Fq) ≥ 68615 with equality if and only if our census is complete.
Combining with Theorem 4.1 then yields Theorem 1.1.

4.2. Point counts with marked points. As noted earlier, given
Theorem 1.1 one can count the F2-points of any moduli stack corre-
sponding to genus 6 curves with some additional marked structure, as
in Corollary 1.2. This count will always yield an integer thanks to the
following fact.
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Lemma 4.2. Let X be a Deligne–Mumford stack over a finite field Fq

admitting a coarse moduli space X. Then #X (Fq) = #X(Fq).

Proof. See [BFP24, Proposition 1.3(3)]. □

4.3. Point counts in strata. Point counts of some strata of M6

are also known, and can be used to check the corresponding sections
of our table. See Table 1 for a summary of this discussion.

• For hyperelliptic curves, it is straightforward to compute that

#H6(Fq) = q11;

see [Ber09] for much stronger results.
• For plane quintics, Gorinov [Gor05] showed that Q6 has triv-

ial rational cohomology, yielding

#Q6(Fq) = q12.

This has been rederived by elementary means by Wennink
[Wen].

We are not aware of any prior computation of #T6,n(Fq). Compar-
ing the values for q = 2 with Zheng’s results on the stable cohomology
of Tg,n [Zhe24] suggests that

#T6,0(Fq) ≈ q13 − q10, #T6,2(Fq) ≈ q12 + q11.

While there is no reason to expect a dearth of lower-order terms, for q =
2 these expressions come astonishingly close to the computed counts
(7168 and 6144 in place of the actual values 7166 and 6148).

For #B6(Fq), we have the following result for odd primes that does
not appear to have been reported previously, but which does not yield
a correct prediction for q = 2 (see below).

Lemma 4.3. For g ≥ 6, let H2g−2 → M1 be the representable mor-
phism of Artin stacks whose fiber over a point [E] is the Hilbert scheme
of reduced zero-dimensional closed subschemes of E of length 2g − 2.
Then for every odd prime power q, #Bg(Fq) = #H2g−2(Fq).

Proof. For any bielliptic curve C of genus g ≥ 6, by Castelnuovo–
Severi the map from C to its genus-1 quotient is unique up to compo-
sition by an automorphism of the target. In particular, the bielliptic
involution ι of C is central in Aut(C).

For a given elliptic curve E over Fq (which as usual has a marked
point O) and a given g, every bielliptic covering C → E of genus g gives
rise to a pair (D,L) in which D is an effective squarefree divisor on E
of degree 2g − 2 (the branch locus) and L is a square root of the line
bundle O(D). In particular, such a pair can only exist if the sum overD
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yields an element of 2E(Fq); when this condition does hold, the square
roots of O(D) form a torsor for the group E(Fq)[2]. Moreover, the
bielliptic covering is determined by the pair up to a relative quadratic
twist. This yields the claim. □

Remark 4.4. Lemma 4.3 breaks down for q even because the bielliptic
covering is no longer tame, so its branch locus is no longer reduced.
See Remark 4.6 for further discussion.

Proposition 4.5. For 6 ≤ g ≤ 11, for every odd prime q,

(9) #Bg(Fq) =
q2g − q2g−4 − q2g−5 + (−1)g+1q

q2 + 1
.

Proof. For E an elliptic curve over Fq, let E◦ denote the set of
closed points of E (of arbitrary degree) and let a(E) := q+1−#E(Fq)
be the trace of Frobenius of E. For n ≥ 0, let dn(E) denote the number
of effective squarefree divisors of degree n on E. View M1,1(Fq) as a
measure space by weighting the isomorphism class of E by 1

#Aut(E)
. By

Lemma 4.3,

#Bg(Fq) =

∫
M1,1(Fq)

d2g−2(E)

q − a(E) + 1
.

We compute the generating series for dn(E) by writing

∞∑
n=0

dn(E)T
n =

∏
x∈E◦

(1 + T deg(x)) =
∏
x∈E◦

1− T 2 deg(x)

1− T deg(x)

=
Z(X,T )

Z(X,T 2)
=

(1− T 2)(1− qT 2)(1− a(E)T + qT 2)

(1− T )(1− qT )(1− a(E)T 2 + qT 4)

= 1 + (q − a(E) + 1)T
1− qT 3

(1− qT )(1− a(E)T 2 + qT 4)
.

In other words, writing [T n]f for the coefficient of T n in the power
series f , we have

dn(E)

q − a(E) + 1
= [T n−1]

1− qT 3

(1− qT )(1− a(E)T 2 + qT 4)
(n > 0)

and hence

#Bg(Fq) =

∫
M1,1(Fq)

[T 2g−3]
1− qT 3

(1− qT )(1− a(E)T 2 + qT 4)
.
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Since we are only extracting odd coefficients, we may rewrite this as

#Bg(Fq) =
1

2

∫
M1,1(Fq)

[T 2g−3]

(
1− qT 3

1− qT
− 1 + qT 3

1 + qT

)
1

1− a(E)T 2 + qT 4

= q

∫
M1,1(Fq)

[T 2g−3]
T (1− T 2)

(1− q2T 2)(1− a(E)T 2 + qT 4)

= q

∫
M1,1(Fq)

[T g−2]
1− T

(1− q2T )(1− a(E)T + qT 2)

= q[T g−2]
1− T

1− q2T

∫
M1,1(Fq)

1

1− a(E)T + qT 2
.

At this point, we begin to write a instead of a(E) to shorten the no-
tation. To evaluate the integral, we first recall that M1,1(Fq) has total
measure q. We next recall that elliptic curves over Fq come in quadratic
twist pairs whose Frobenius traces differ by a sign, so

∫
M1,1(Fq)

a2n+1 = 0

for all n ≥ 0. In particular,∫
M1,1(Fq)

1

1− aT + qT 2
=

∫
M1,1(Fq)

1

2(1− aT + qT 2)
+

1

2(1 + aT + qT 2)

=

∫
M1,1(Fq)

1 + qT 2

1− (a2 − 2q)T 2 + q2T 4

≡
∫
M1,1(Fq)

(1 + (a2 − q)T 2 + (a4 − 3a2q + q2)T 4

+ (a6 − 5a4q + 6a2q2 − q3)T 6

+ (a8 − 7a6q + 15a4q2 − 10a2q3 + q4)T 8) (mod T 10).

We finally invoke a result of Birch [Bir68] (as reformulated in [KP17,
Theorem 1]): for q an odd prime,∫

M1,1(Fq)

a2 = q2 − 1∫
M1,1(Fq)

a4 = 2q3 − 3q − 1∫
M1,1(Fq)

a6 = 5q4 − 9q2 − 5q − 1∫
M1,1(Fq)

a8 = 14q5 − 28q3 − 20q2 − 7q − 1.
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This yields∫
M1,1(Fq)

1

1− aT + qT 2
≡ q − T 2 − T 4 − T 6 − T 8 (mod T 10);

hence for 6 ≤ g ≤ 11,

#Bg(Fq) = q[T g−2]
1− T

1− q2T

(
q − T 2

1− T 2

)
= q[T g−2]

q − (q + 1)T 2

(1 + T )(1− q2T )

=
q

q2 + 1
[T g−1]

(
q − (q + 1)T 2

1− q2T
− q − (q + 1)T 2

1 + T

)
=

q

q2 + 1
(qq2g−2 − (q + 1)q2g−6 − q(−1)g−1 + (q + 1)(−1)g−3)

which simplifies to the stated expression. □

Remark 4.6. There is a mild misattribution in the proof of Proposi-
tion 4.5: Birch proved his theorem assuming q ≥ 5, whereas we stated
our result for q ≥ 3. However, Ihara’s extension of Birch’s formula
works uniformly in all characteristics and provides an extension to
prime powers (reflecting the fact that M1,2g−2 is smooth over Z); see
[KP17, Theorem 2] for a compact statement.

Even with this, the proof of Proposition 4.5 does not cover q =
2 (Remark 4.4), and indeed the formula (9) breaks down: it predicts
#B6(F2) = 742, whereas the computed value is 744.

Remark 4.7. It is also shown in [Bir68] that
∫
M1,1(Fq)

a(E)10 includes
a nonzero contribution from the ∆ modular form, as then do #M1,11(Fq)
and #B12(Fq); in particular, neither of these is a polynomial in q. This
state of affairs corresponds to the fact that the bielliptic locus of Mg has
only tautological cycle classes for g ≤ 11 [CL24a] but not for g = 12
[vZ18].

5. Progress in genus 7

As in [Ked23], one can also describe the Brill–Noether stratifica-
tion of M7 explicitly.

Theorem 5.1. Let C be a curve of genus 7 over a finite field k.
Then one (and only one) of the following holds.

(1) The curve C is hyperelliptic.
(2) The curve C is trigonal of Maroni invariant 3. In this case,

C occurs as a hypersurface of degree 9 in P(1 : 1 : 3)k.
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Table 1. Point counts (unweighted and weighted) over
F2 of the various strata of M6. When known, the
weighted point count over Fq is also listed.

Stratum Unweighted Weighted Weighted count over Fq

H6 4134 2048 q11

B6 1530 744 q10 − q8 − q5 + q3 − q (q odd)
Q6 4204 4096 q12

T6,0 7282 7166 ?
T6,2 6181 6148 ?
MBN

6 48896 48413 ?
M6 72227 68615 q15 + q14 + 2q13 + q12 − q10 + q3 − 1

(3) The curve C is trigonal of Maroni invariant 1. In this case,
C occurs as a complete intersection of type (1, 1) ∩ (3, 3) in
P1

k ×k P
2
k.

(4) The curve C is bielliptic.
(5) The curve C is not bielliptic but admits a g26 which is self-

adjoint (squares to the canonical class). In this case, C is a
complete intersection of type (3) ∩ (4) in P(1 : 1 : 1 : 2)k,
where the degree 3 hypersurface can be taken to be defined by
x0x3 + P3(x1, x2) = 0 for some separable cubic P3.

(6) The curve C admits a pair of distinct g26’s. In this case, C
occurs as a complete intersection of type (1, 1) ∩ (1, 1) ∩ (2, 2)
in P2

k ×k P
2
k.

(7) The curve C does not admit a g26 but Ck does. In this case, C
occurs as a complete intersection of type (1, 1) ∩ (1, 1) ∩ (2, 2)
in the quadratic twist of P2

k ×k P
2
k.

(8) The curve C admits a g14 but Ck does not admit a g26. In
this case, C occurs as a complete intersection of type (1, 1) ∩
(1, 2)∩ (1, 2) in P1

k ×k P
3
k in which the (1, 1)-hypersurface is a

P2-bundle over P1.
(9) The curve C does not admit a g14. In this case, C occurs as

a transverse intersection of 9 hyperplanes and the orthogonal
Grassmannian OG+(5, 10) in P15

k .

Proof. Again, most of the above follows from Petri’s theorem. For
the rest, see [Ked24b, Theorem 3.2]. □

We list the dimensions of the corresponding strata in moduli in Ta-
ble 2. Note that cases (6) and (7) of Theorem 5.1 together correspond
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Table 2. Preliminary point counts (unweighted and
weighted) over F2 of the various strata of M7. The cases
“rational g26” and “irrational g26” together constitute a sin-
gle stratum.

Stratum Dimension Unweighted Weighted
H7 13 16544 8192
B7 12 6205 2970
T7,3 13 8340 8264
T7,1 15 42857 42725

self-adjoint g26 15 24925 24580
rational g26 16 43012 42240.5

irrational g26 50791 49982.5
tetragonal 17 171102 169850

MBN
7 18 ? ?

to a single stratum in M7, as the distinction between them is not sta-
ble under base change; the listed value for the dimension in these cases
corresponds to this single stratum.

Using the methods of [Ked24b], we have enumerated F2-points of
M7 in all but the generic stratum; preliminary results are reported in
Table 2, but these should be treated with some caution as we have
not yet been able to run many consistency checks. That said, we can
identify some features of the data that comport with theoretical pre-
dictions.

• We have #H7(F2) = 213.
• We have #B7(F2) = 212−210−27+25−23−2 which agrees with

the formula from (9) for q odd, in contrast with Remark 4.6.
• Each stratum has integral weighted point count, as predicted

by Lemma 4.2. In particular, the sum of the rational and
irrational g26 counts is integral.

We also observe that all 31 possible Newton polygons for abelian
varieties of dimension 7 over F2 occur for Jacobians.
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